Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma is the New Green

09.03.2010
Ionized gas improves treatment of PET fibers

A more environmentally friendly process to treat textile fibers that are used in garments, carpets, curtains, and other applications has recently been reported by researchers from the University of Torino (Italy) in the journal ChemSusChem. The team, led by Guido Viscardi, describe how treating polymeric fibers with a low-temperature partially ionized gas increases the ability of the fibers to attract water, which is necessary to make them easier to process.

About 39 million tonnes of poly(ethylene terephtalate) (PET) fibers are produced for the textiles industry annually. PET fibers are used in a variety of products, but in their pristine state the fibers are not easy to work with. Currently, they are therefore treated with large volumes of water containing specific chemicals. The treatment is aimed at increasing the affinity of the fibers for water, so that they can, for example, be more easily colored. The purchase and disposal of these chemical solutions for treatment is costly, and in addition, the process consumes a lot of energy because the fibers have to be dried again afterwards.

According to the researchers, the proposed treatment with plasma, instead of the aqueous solutions, roughens the surface of the fibers and generates polar groups and radicals onto the surface. The team investigated several plasma conditions and their effects on the PET fibers. Sophisticated microscopy techniques in combination with classical droplet measurements allowed them to quantify and explain the results of the plasma treatment.

The experiments confirm that the plasma treatment has a comparable effect to the chemical treatment: the affinity for water is increased, which makes the processing of the fibers easier. This is exemplified by the image: after treatment the water droplet on the fiber surface is spread out more, because it is easier for the surface and water molecules to interact.

According to Viscardi, atmospheric-pressure glow-discharge plasma is a green and alternative method to render PET fibers hydrophilic without using wet treatments. Moreover, the possibility of working in continuous (i.e., by using a roll-to-roll system), is a very important feature for the industrialization of this process.

The method reported by the team from Torino is an effective effort towards the implementation of green chemistry: it prevents waste, reduces the reliance on the use of substances and feedstocks and consumes only a few Watts per m2.

Author: Guido Viscardi, Università degli Studi di Torini (Italy), http://biotec.campusnet.unito.it/cgi-bin/docenti.pl/Show?_id=gviscard

Title: Roll-to-Roll Atmospheric Plasma Treatment: A Green and Efficient Process to Improve the Hydrophilicity of a PET Surface

ChemSusChem, Permalink: http://dx.doi.org/10.1002/cssc.200900288

Guido Viscardi | ChemSusChem
Further information:
http://www.chemsuschem.org
http://biotec.campusnet.unito.it/cgi-bin/docenti.pl/Show?_id=gviscard

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>