Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma is the New Green

09.03.2010
Ionized gas improves treatment of PET fibers

A more environmentally friendly process to treat textile fibers that are used in garments, carpets, curtains, and other applications has recently been reported by researchers from the University of Torino (Italy) in the journal ChemSusChem. The team, led by Guido Viscardi, describe how treating polymeric fibers with a low-temperature partially ionized gas increases the ability of the fibers to attract water, which is necessary to make them easier to process.

About 39 million tonnes of poly(ethylene terephtalate) (PET) fibers are produced for the textiles industry annually. PET fibers are used in a variety of products, but in their pristine state the fibers are not easy to work with. Currently, they are therefore treated with large volumes of water containing specific chemicals. The treatment is aimed at increasing the affinity of the fibers for water, so that they can, for example, be more easily colored. The purchase and disposal of these chemical solutions for treatment is costly, and in addition, the process consumes a lot of energy because the fibers have to be dried again afterwards.

According to the researchers, the proposed treatment with plasma, instead of the aqueous solutions, roughens the surface of the fibers and generates polar groups and radicals onto the surface. The team investigated several plasma conditions and their effects on the PET fibers. Sophisticated microscopy techniques in combination with classical droplet measurements allowed them to quantify and explain the results of the plasma treatment.

The experiments confirm that the plasma treatment has a comparable effect to the chemical treatment: the affinity for water is increased, which makes the processing of the fibers easier. This is exemplified by the image: after treatment the water droplet on the fiber surface is spread out more, because it is easier for the surface and water molecules to interact.

According to Viscardi, atmospheric-pressure glow-discharge plasma is a green and alternative method to render PET fibers hydrophilic without using wet treatments. Moreover, the possibility of working in continuous (i.e., by using a roll-to-roll system), is a very important feature for the industrialization of this process.

The method reported by the team from Torino is an effective effort towards the implementation of green chemistry: it prevents waste, reduces the reliance on the use of substances and feedstocks and consumes only a few Watts per m2.

Author: Guido Viscardi, Università degli Studi di Torini (Italy), http://biotec.campusnet.unito.it/cgi-bin/docenti.pl/Show?_id=gviscard

Title: Roll-to-Roll Atmospheric Plasma Treatment: A Green and Efficient Process to Improve the Hydrophilicity of a PET Surface

ChemSusChem, Permalink: http://dx.doi.org/10.1002/cssc.200900288

Guido Viscardi | ChemSusChem
Further information:
http://www.chemsuschem.org
http://biotec.campusnet.unito.it/cgi-bin/docenti.pl/Show?_id=gviscard

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>