Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants and Vertebrae Share Mechanism for Placement of Organs

17.07.2012
As organisms develop, their internal organs arrange in a consistent asymmetrical pattern--heart and stomach to the left, liver and appendix to the right. But how does this happen?

Biologists at Tufts University have produced the first evidence that a class of proteins that make up a cell's skeleton -- tubulin proteins -- drives asymmetrical patterning across a broad spectrum of species, including plants, nematode worms, frogs, and human cells, at their earliest stages of development.

"Understanding this mechanism offers insights important to the eventual diagnosis, prevention and possible repair of birth defects that result when organs are arranged abnormally," said Michael Levin, Ph.D., senior author on the paper and director of the Center for Regenerative and Developmental Biology at Tufts University's School of Arts and Sciences.

"The research also suggests that the origin of consistent asymmetry is ancient, dating back to before plants and animals independently became multicellular organisms," he added.

The work appears in the Proceedings of the National Academy of Science Online Early Edition publishing the week of July 16, 2012.

Co-authors with Levin are Joan M. Lemire, Ph.D.,a research associate in the Department of Biology, and doctoral student Maria Lobikin, also in the Department of Biology.

Tubulin Proteins Operate Across Species

Up to now, scientists have identified cilia—rotating hair-like structures located on the outside of cells—as having an essential role in determining where internal organs eventually end up. Scientists hypothesized that during later stages of development, cilia direct the flow of embryonic fluid which allows the embryo to distinguish its right side from its left.

But it is known that many species develop consistent left-right asymmetry without cilia being present, which suggests that asymmetry can be accomplished in other ways.

Levin's team pinpointed tubulin proteins, an important component of the cell’s skeleton, or cytoskeleton. Tubulin mutations are known to affect the asymmetry of a plant called Arabidopsis, and Levin’s previous work suggested the possibility that laterality is ultimately triggered by some component of the cytoskeleton. Further, this mechanism could be widely used throughout the tree of life and could function at the earliest stages of embryonic development.

In their latest experiment, the Tufts researchers injected the same mutated tubulins into early frog embryos. The resulting tadpoles were normal, except that their internal organs’ positions were randomly placed on either the left or right side.

In subsequent experiments, collaborators at the University Of Illinois College Of Medicine and Cincinnati Children's Hospital Research Foundation found that mutated tubulins also have the same effect on left-right asymmetry of the nervous system in nematodes and on the function of human cells in culture.

Altogether, the Tufts experiment showed that tubulins are unique proteins in the asymmetry pathway that drive left-right patterning across the wide spectrum of separated species.

Importantly, mutated tubulins perturbed asymmetry only when they were introduced immediately after fertilization, not when they were injected after the first or second cell division. This suggested that a normal cytoskeleton drives asymmetry at extremely early stages of embryogenesis, many hours earlier than the appearance of cilia. Further, the Tufts biologists found that tubulins play a crucial role in the movement of other molecules to the left and right sides of the early embryo.

An Understanding of Birth Defects

"What's remarkable about these findings is that the same proteins are involved in establishing asymmetry in organisms as diverse as plants, nematodes, and frogs, and they even affect symmetry in human tissue culture cells," said Susan Haynes, Ph.D., of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the work. "This work is a great example of basic research that not only illuminates fundamental developmental mechanisms, but also increases our understanding of a class of serious human birth defects."

Other funding sources include the American Heart Association.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>