Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants and Vertebrae Share Mechanism for Placement of Organs

17.07.2012
As organisms develop, their internal organs arrange in a consistent asymmetrical pattern--heart and stomach to the left, liver and appendix to the right. But how does this happen?

Biologists at Tufts University have produced the first evidence that a class of proteins that make up a cell's skeleton -- tubulin proteins -- drives asymmetrical patterning across a broad spectrum of species, including plants, nematode worms, frogs, and human cells, at their earliest stages of development.

"Understanding this mechanism offers insights important to the eventual diagnosis, prevention and possible repair of birth defects that result when organs are arranged abnormally," said Michael Levin, Ph.D., senior author on the paper and director of the Center for Regenerative and Developmental Biology at Tufts University's School of Arts and Sciences.

"The research also suggests that the origin of consistent asymmetry is ancient, dating back to before plants and animals independently became multicellular organisms," he added.

The work appears in the Proceedings of the National Academy of Science Online Early Edition publishing the week of July 16, 2012.

Co-authors with Levin are Joan M. Lemire, Ph.D.,a research associate in the Department of Biology, and doctoral student Maria Lobikin, also in the Department of Biology.

Tubulin Proteins Operate Across Species

Up to now, scientists have identified cilia—rotating hair-like structures located on the outside of cells—as having an essential role in determining where internal organs eventually end up. Scientists hypothesized that during later stages of development, cilia direct the flow of embryonic fluid which allows the embryo to distinguish its right side from its left.

But it is known that many species develop consistent left-right asymmetry without cilia being present, which suggests that asymmetry can be accomplished in other ways.

Levin's team pinpointed tubulin proteins, an important component of the cell’s skeleton, or cytoskeleton. Tubulin mutations are known to affect the asymmetry of a plant called Arabidopsis, and Levin’s previous work suggested the possibility that laterality is ultimately triggered by some component of the cytoskeleton. Further, this mechanism could be widely used throughout the tree of life and could function at the earliest stages of embryonic development.

In their latest experiment, the Tufts researchers injected the same mutated tubulins into early frog embryos. The resulting tadpoles were normal, except that their internal organs’ positions were randomly placed on either the left or right side.

In subsequent experiments, collaborators at the University Of Illinois College Of Medicine and Cincinnati Children's Hospital Research Foundation found that mutated tubulins also have the same effect on left-right asymmetry of the nervous system in nematodes and on the function of human cells in culture.

Altogether, the Tufts experiment showed that tubulins are unique proteins in the asymmetry pathway that drive left-right patterning across the wide spectrum of separated species.

Importantly, mutated tubulins perturbed asymmetry only when they were introduced immediately after fertilization, not when they were injected after the first or second cell division. This suggested that a normal cytoskeleton drives asymmetry at extremely early stages of embryogenesis, many hours earlier than the appearance of cilia. Further, the Tufts biologists found that tubulins play a crucial role in the movement of other molecules to the left and right sides of the early embryo.

An Understanding of Birth Defects

"What's remarkable about these findings is that the same proteins are involved in establishing asymmetry in organisms as diverse as plants, nematodes, and frogs, and they even affect symmetry in human tissue culture cells," said Susan Haynes, Ph.D., of the National Institutes of Health's National Institute of General Medical Sciences, which partially funded the work. "This work is a great example of basic research that not only illuminates fundamental developmental mechanisms, but also increases our understanding of a class of serious human birth defects."

Other funding sources include the American Heart Association.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Alex Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>