Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants on steroids

08.03.2010
The identification of a gene involved in steroid hormone signaling in plants could benefit agriculture and reduce atmospheric carbon dioxide

Working with Arabidopsis, a member of the cabbage family, a team led by Takeshi Nakano of the RIKEN Advanced Science Institute in Wako has identified a gene, BPG2, that encodes a previously uncharacterized protein expressed by chloroplasts, the power houses of plant cells where energy from sunlight is harvested by the green pigment chlorophyll and used to build sugars for growth.

The researchers found that BPG2 is involved in signaling mediated by brassinosteroids, plant hormones related to steroid hormones of animals. In plants, these hormones have specific roles in growth and development of stems, leaves and roots. They are also involved in pollen tube growth required for sexual reproduction, and in senescence.

“Our identification of a chloroplast gene controlled by brassinosteroids demonstrates that these steroid hormones are also important for chloroplast regulation,” says Nakano.

Nakano and colleagues genetically screened some 10,000 Arabidopsis lines using a new chemical biology method and identified a pale green mutant that was insensitive to the acceleration of greening normally caused by Brz (brassinazole), a chemical that specifically inhibits the biosynthesis of brassinosteroids. This suggested the disruption of brassinosteroid-chloroplast signaling in the mutant plants and led to the identification of BPG2.

Further investigation revealed that chloroplast proteins normally induced by Brz failed to accumulate in the mutant plants. Electron microscope studies also showed that the structure of chloroplasts was abnormal in these plants.

The researchers then found that BPG2 expression is induced by light and Brz. The BPG2 protein is not directly involved in transcribing DNA to messenger RNA, the genetic template of protein. Instead, it regulates the splicing in chloroplasts of molecular precursors of ribosomal RNA, the core component of the machinery called the ribosome that manufactures proteins.

A computer search of DNA sequence databases revealed that BPG2-related genes occur in the genomes of other plants, including green algae, mosses and rice, and also in the common soil bacterium Bacillus subtilis.

Plants arose from a union of two organisms, including the bacterial ancestor of chloroplasts, which explains why chloroplasts have their own genomes.

“The fact that BPG2-related genes are conserved in bacteria suggests that the BPG2 gene family arose early in the evolution of life on Earth,” explains Nakano. “We hope to genetically engineer plants to increase the expression of BPG2 so as to promote chloroplast and photosynthesis activity, which in future could potentially increase the productivity of agricultural crops and reduce the amount of carbon dioxide in Earth’s atmosphere.”

The corresponding author for this highlight is based at the Plant Chemical Biology Research Unit, RIKEN Advanced Science Institute

Journal information

Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T. & Nakano, T. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal 61, 409–422 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6196
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>