Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants on steroids

08.03.2010
The identification of a gene involved in steroid hormone signaling in plants could benefit agriculture and reduce atmospheric carbon dioxide

Working with Arabidopsis, a member of the cabbage family, a team led by Takeshi Nakano of the RIKEN Advanced Science Institute in Wako has identified a gene, BPG2, that encodes a previously uncharacterized protein expressed by chloroplasts, the power houses of plant cells where energy from sunlight is harvested by the green pigment chlorophyll and used to build sugars for growth.

The researchers found that BPG2 is involved in signaling mediated by brassinosteroids, plant hormones related to steroid hormones of animals. In plants, these hormones have specific roles in growth and development of stems, leaves and roots. They are also involved in pollen tube growth required for sexual reproduction, and in senescence.

“Our identification of a chloroplast gene controlled by brassinosteroids demonstrates that these steroid hormones are also important for chloroplast regulation,” says Nakano.

Nakano and colleagues genetically screened some 10,000 Arabidopsis lines using a new chemical biology method and identified a pale green mutant that was insensitive to the acceleration of greening normally caused by Brz (brassinazole), a chemical that specifically inhibits the biosynthesis of brassinosteroids. This suggested the disruption of brassinosteroid-chloroplast signaling in the mutant plants and led to the identification of BPG2.

Further investigation revealed that chloroplast proteins normally induced by Brz failed to accumulate in the mutant plants. Electron microscope studies also showed that the structure of chloroplasts was abnormal in these plants.

The researchers then found that BPG2 expression is induced by light and Brz. The BPG2 protein is not directly involved in transcribing DNA to messenger RNA, the genetic template of protein. Instead, it regulates the splicing in chloroplasts of molecular precursors of ribosomal RNA, the core component of the machinery called the ribosome that manufactures proteins.

A computer search of DNA sequence databases revealed that BPG2-related genes occur in the genomes of other plants, including green algae, mosses and rice, and also in the common soil bacterium Bacillus subtilis.

Plants arose from a union of two organisms, including the bacterial ancestor of chloroplasts, which explains why chloroplasts have their own genomes.

“The fact that BPG2-related genes are conserved in bacteria suggests that the BPG2 gene family arose early in the evolution of life on Earth,” explains Nakano. “We hope to genetically engineer plants to increase the expression of BPG2 so as to promote chloroplast and photosynthesis activity, which in future could potentially increase the productivity of agricultural crops and reduce the amount of carbon dioxide in Earth’s atmosphere.”

The corresponding author for this highlight is based at the Plant Chemical Biology Research Unit, RIKEN Advanced Science Institute

Journal information

Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T. & Nakano, T. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal 61, 409–422 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6196
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>