Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants on steroids

08.03.2010
The identification of a gene involved in steroid hormone signaling in plants could benefit agriculture and reduce atmospheric carbon dioxide

Working with Arabidopsis, a member of the cabbage family, a team led by Takeshi Nakano of the RIKEN Advanced Science Institute in Wako has identified a gene, BPG2, that encodes a previously uncharacterized protein expressed by chloroplasts, the power houses of plant cells where energy from sunlight is harvested by the green pigment chlorophyll and used to build sugars for growth.

The researchers found that BPG2 is involved in signaling mediated by brassinosteroids, plant hormones related to steroid hormones of animals. In plants, these hormones have specific roles in growth and development of stems, leaves and roots. They are also involved in pollen tube growth required for sexual reproduction, and in senescence.

“Our identification of a chloroplast gene controlled by brassinosteroids demonstrates that these steroid hormones are also important for chloroplast regulation,” says Nakano.

Nakano and colleagues genetically screened some 10,000 Arabidopsis lines using a new chemical biology method and identified a pale green mutant that was insensitive to the acceleration of greening normally caused by Brz (brassinazole), a chemical that specifically inhibits the biosynthesis of brassinosteroids. This suggested the disruption of brassinosteroid-chloroplast signaling in the mutant plants and led to the identification of BPG2.

Further investigation revealed that chloroplast proteins normally induced by Brz failed to accumulate in the mutant plants. Electron microscope studies also showed that the structure of chloroplasts was abnormal in these plants.

The researchers then found that BPG2 expression is induced by light and Brz. The BPG2 protein is not directly involved in transcribing DNA to messenger RNA, the genetic template of protein. Instead, it regulates the splicing in chloroplasts of molecular precursors of ribosomal RNA, the core component of the machinery called the ribosome that manufactures proteins.

A computer search of DNA sequence databases revealed that BPG2-related genes occur in the genomes of other plants, including green algae, mosses and rice, and also in the common soil bacterium Bacillus subtilis.

Plants arose from a union of two organisms, including the bacterial ancestor of chloroplasts, which explains why chloroplasts have their own genomes.

“The fact that BPG2-related genes are conserved in bacteria suggests that the BPG2 gene family arose early in the evolution of life on Earth,” explains Nakano. “We hope to genetically engineer plants to increase the expression of BPG2 so as to promote chloroplast and photosynthesis activity, which in future could potentially increase the productivity of agricultural crops and reduce the amount of carbon dioxide in Earth’s atmosphere.”

The corresponding author for this highlight is based at the Plant Chemical Biology Research Unit, RIKEN Advanced Science Institute

Journal information

Komatsu, T., Kawaide, H., Saito, C., Yamagami, A., Shimada, S., Nakazawa, M., Matsui, M., Nakano, A., Tsujimoto, M., Natsume, M., Abe, H., Asami, T. & Nakano, T. The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA. The Plant Journal 61, 409–422 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6196
http://www.researchsea.com

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>