Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants in space: A novel method for fixing plant tissue samples maximizes time, resources, and data

12.09.2013
At work on the International Space Station, researchers studying plant and cell growth in space encountered a challenge.

Imaging revealed interesting spaceflight-associated root morphologies. They needed to fix the tissues for further study back on Earth, but conventional fixation methods require separate fixatives depending on whether the sample is intended for molecular or morphological study.


This is a SEM image of Arabidopsis tissue processed using the new single fixation protocol developed by Schultz et al. Pictured is the adaxial leaf epidermis (3500x, scale bar = 8.57 ìm).

Credit: Image courtesy of Schultz et al.

If the scientists wanted to study how spaceflight affected patterns of gene expression central to morphological patterns of cell growth, they needed a fixation method that would allow them to study both perspectives.

Most scientists at work in the laboratory rely on protocols that have been developed without the need for restrictions on the amount of space, time, or reagents they use. For scientists conducting experiments in spaceflight, time and resources are strictly regulated and limited, and researchers must know in advance which protocols will maximize the usefulness of the data they collect.

University of Florida professors Anna-Lisa Paul and Robert Ferl and colleagues are collaborating with the National Aeronautics and Space Administration (NASA) to understand plant growth and development in spaceflight. Along with lead author and graduate student Eric Schultz, they have developed a single fixation protocol for use in space that allows plant material to be used for multiple experimental applications. Their new protocol for sample preparation was tested on Arabidopsis tissues harvested on the International Space Station and is described in the August issue of Applications in Plant Sciences (available for free viewing at http://www.bioone.org/doi/pdf/10.3732/apps.1300034).

Because of limitations in astronaut crew time and orbital resources, previous spaceflight fixation protocols were designated as either molecular or morphological, due to the separate fixatives required for each application. Tissues for morphologic study were fixed in 3% glutaraldehyde (or a similar solution), and tissues for molecular study were fixed in the tissue storage reagent RNAlater. RNAlater has not commonly been used as a morphologic fixative, as it can produce unclear images with high background staining.

The new method developed by Schultz et al. puts RNAlater-fixed samples through a desalination process to return them to a fresh-like state, and then uses low-temperature scanning electron microscopy (cryo-SEM) to preserve tissues for imaging. Because few laboratories have access to the necessary equipment for cryo-SEM, the authors tested and developed a protocol that emulates cryo-SEM using standard SEM equipment and, importantly, that results in minimal tissue damage.

Although it was developed to address specific constraints for spaceflight experiments, Paul notes that their new method is broadly applicable. "There are a lot of situations where biologists want to collect samples in extreme situations. In our case—a space vehicle orbiting the Earth."

The new protocol maximizes the amount of data obtained from a single sample and allows for the concomitant examination of both molecular and morphological features. Using a single fixation protocol, direct comparisons between changes in morphology and altered gene expression can be made. Such an analysis not only makes full use of samples and replicates but also enables a robust analysis of the relationship between heredity and development. "Putting two tools together, it is powerful to look at the morphology in conjunction with the genes that are being expressed," says Paul.

The new protocol boasts low costs and high accessibility, and has wide application to any situation where recovery of biological resources is limited. Notably, this includes researchers collecting and preserving samples in the field, where space for materials is at a premium. "In places where sampling is limited, difficult, or expensive, the use of preservatives allows for more routes to analysis," notes Ferl.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (http://www.botany.org), a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection (http://www.bioone.org/loi/apps).

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>