Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants in space: A novel method for fixing plant tissue samples maximizes time, resources, and data

At work on the International Space Station, researchers studying plant and cell growth in space encountered a challenge.

Imaging revealed interesting spaceflight-associated root morphologies. They needed to fix the tissues for further study back on Earth, but conventional fixation methods require separate fixatives depending on whether the sample is intended for molecular or morphological study.

This is a SEM image of Arabidopsis tissue processed using the new single fixation protocol developed by Schultz et al. Pictured is the adaxial leaf epidermis (3500x, scale bar = 8.57 ìm).

Credit: Image courtesy of Schultz et al.

If the scientists wanted to study how spaceflight affected patterns of gene expression central to morphological patterns of cell growth, they needed a fixation method that would allow them to study both perspectives.

Most scientists at work in the laboratory rely on protocols that have been developed without the need for restrictions on the amount of space, time, or reagents they use. For scientists conducting experiments in spaceflight, time and resources are strictly regulated and limited, and researchers must know in advance which protocols will maximize the usefulness of the data they collect.

University of Florida professors Anna-Lisa Paul and Robert Ferl and colleagues are collaborating with the National Aeronautics and Space Administration (NASA) to understand plant growth and development in spaceflight. Along with lead author and graduate student Eric Schultz, they have developed a single fixation protocol for use in space that allows plant material to be used for multiple experimental applications. Their new protocol for sample preparation was tested on Arabidopsis tissues harvested on the International Space Station and is described in the August issue of Applications in Plant Sciences (available for free viewing at

Because of limitations in astronaut crew time and orbital resources, previous spaceflight fixation protocols were designated as either molecular or morphological, due to the separate fixatives required for each application. Tissues for morphologic study were fixed in 3% glutaraldehyde (or a similar solution), and tissues for molecular study were fixed in the tissue storage reagent RNAlater. RNAlater has not commonly been used as a morphologic fixative, as it can produce unclear images with high background staining.

The new method developed by Schultz et al. puts RNAlater-fixed samples through a desalination process to return them to a fresh-like state, and then uses low-temperature scanning electron microscopy (cryo-SEM) to preserve tissues for imaging. Because few laboratories have access to the necessary equipment for cryo-SEM, the authors tested and developed a protocol that emulates cryo-SEM using standard SEM equipment and, importantly, that results in minimal tissue damage.

Although it was developed to address specific constraints for spaceflight experiments, Paul notes that their new method is broadly applicable. "There are a lot of situations where biologists want to collect samples in extreme situations. In our case—a space vehicle orbiting the Earth."

The new protocol maximizes the amount of data obtained from a single sample and allows for the concomitant examination of both molecular and morphological features. Using a single fixation protocol, direct comparisons between changes in morphology and altered gene expression can be made. Such an analysis not only makes full use of samples and replicates but also enables a robust analysis of the relationship between heredity and development. "Putting two tools together, it is powerful to look at the morphology in conjunction with the genes that are being expressed," says Paul.

The new protocol boasts low costs and high accessibility, and has wide application to any situation where recovery of biological resources is limited. Notably, this includes researchers collecting and preserving samples in the field, where space for materials is at a premium. "In places where sampling is limited, difficult, or expensive, the use of preservatives allows for more routes to analysis," notes Ferl.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (, a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection (

For further information, please contact the APPS staff at

Beth Parada | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>