Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants in space: A novel method for fixing plant tissue samples maximizes time, resources, and data

12.09.2013
At work on the International Space Station, researchers studying plant and cell growth in space encountered a challenge.

Imaging revealed interesting spaceflight-associated root morphologies. They needed to fix the tissues for further study back on Earth, but conventional fixation methods require separate fixatives depending on whether the sample is intended for molecular or morphological study.


This is a SEM image of Arabidopsis tissue processed using the new single fixation protocol developed by Schultz et al. Pictured is the adaxial leaf epidermis (3500x, scale bar = 8.57 ìm).

Credit: Image courtesy of Schultz et al.

If the scientists wanted to study how spaceflight affected patterns of gene expression central to morphological patterns of cell growth, they needed a fixation method that would allow them to study both perspectives.

Most scientists at work in the laboratory rely on protocols that have been developed without the need for restrictions on the amount of space, time, or reagents they use. For scientists conducting experiments in spaceflight, time and resources are strictly regulated and limited, and researchers must know in advance which protocols will maximize the usefulness of the data they collect.

University of Florida professors Anna-Lisa Paul and Robert Ferl and colleagues are collaborating with the National Aeronautics and Space Administration (NASA) to understand plant growth and development in spaceflight. Along with lead author and graduate student Eric Schultz, they have developed a single fixation protocol for use in space that allows plant material to be used for multiple experimental applications. Their new protocol for sample preparation was tested on Arabidopsis tissues harvested on the International Space Station and is described in the August issue of Applications in Plant Sciences (available for free viewing at http://www.bioone.org/doi/pdf/10.3732/apps.1300034).

Because of limitations in astronaut crew time and orbital resources, previous spaceflight fixation protocols were designated as either molecular or morphological, due to the separate fixatives required for each application. Tissues for morphologic study were fixed in 3% glutaraldehyde (or a similar solution), and tissues for molecular study were fixed in the tissue storage reagent RNAlater. RNAlater has not commonly been used as a morphologic fixative, as it can produce unclear images with high background staining.

The new method developed by Schultz et al. puts RNAlater-fixed samples through a desalination process to return them to a fresh-like state, and then uses low-temperature scanning electron microscopy (cryo-SEM) to preserve tissues for imaging. Because few laboratories have access to the necessary equipment for cryo-SEM, the authors tested and developed a protocol that emulates cryo-SEM using standard SEM equipment and, importantly, that results in minimal tissue damage.

Although it was developed to address specific constraints for spaceflight experiments, Paul notes that their new method is broadly applicable. "There are a lot of situations where biologists want to collect samples in extreme situations. In our case—a space vehicle orbiting the Earth."

The new protocol maximizes the amount of data obtained from a single sample and allows for the concomitant examination of both molecular and morphological features. Using a single fixation protocol, direct comparisons between changes in morphology and altered gene expression can be made. Such an analysis not only makes full use of samples and replicates but also enables a robust analysis of the relationship between heredity and development. "Putting two tools together, it is powerful to look at the morphology in conjunction with the genes that are being expressed," says Paul.

The new protocol boasts low costs and high accessibility, and has wide application to any situation where recovery of biological resources is limited. Notably, this includes researchers collecting and preserving samples in the field, where space for materials is at a premium. "In places where sampling is limited, difficult, or expensive, the use of preservatives allows for more routes to analysis," notes Ferl.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (http://www.botany.org), a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection (http://www.bioone.org/loi/apps).

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>