Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants sense low oxygen levels to survive flooding

24.10.2011
Breakthrough finding by UC Riverside and the University of Nottingham researchers could lead to production of flood-tolerant crops

As countries such as Pakistan, Bangladesh, Vietnam and parts of the United States and United Kingdom have fallen victim to catastrophic flooding in recent years, tolerance of crops to partial or complete submergence is a key target for global food security. Starved of oxygen, crops cannot survive a flood for long periods of time, leading to drastic reductions in yields for farmers.

Experts at the University of California, Riverside and The University of Nottingham now report they have discovered how plants sense low oxygen levels to survive flooding – a finding that could lead eventually to the production of high-yielding, flood-tolerant crops, benefiting farmers, markets and consumers everywhere.

Specifically, the researchers identified the molecular mechanism involved. This mechanism controls key plant proteins, causing them to be unstable when oxygen levels are normal. When roots or shoots are flooded and oxygen levels drop, these proteins become stable.

"When a plant cell is starved for oxygen, it cannot efficiently generate adenosine triphosphate or ATP, the high-energy molecule plants use for energy storage," explained Julia Bailey-Serres, one of the key researchers participating in the study and a professor of genetics in the Department of Botany and Plant Sciences at UC Riverside. "Because the plant cannot generate enough energy to sustain normal growth, it tries a different approach: it taps into its energy reserves, resulting in more sugars breaking down, as opposed to when oxygen is available, in order to produce ATP. These subtle changes in metabolism are characteristic of low oxygen stress in plant and animal cells. It's similar to the production of lactic acid in our bodies when we exercise. We produce lactic acid as a by-product because we are not producing energy aerobically."

The study describing the oxygen-sensing protein turnover mechanism appears online Oct. 23 in Nature.

"The mechanism controls key regulatory proteins called transcription factors that can turn other genes on and off," explained Michael Holdsworth, a professor of crop science at the University of Nottingham who co-led the research project with Bailey-Serres. "It is the unusual structure of these proteins that destines them for destruction under normal oxygen levels, but when oxygen levels decline, they become stable. Their stability results in changes in gene expression and metabolism that enhance survival in the low oxygen conditions brought on by flooding. When the plants return to normal oxygen levels, the proteins are again degraded, providing a feedback control mechanism."

Bailey-Serres, a member of UCR's Institute for Integrative Genome Biology and an international expert in plant responses to flooding, has been working since 2003 on the cellular mechanisms that regulate submergence tolerance in rice. Her lab has focused on SUB1A, a gene responsible for tolerance of complete submergence in rice and found only in some low-yielding rice varieties in India and Sri Lanka. Her lab is renowned for having characterized the roles of the SUB1A gene that has been bred into modern rice varieties to allow plants to survive two weeks or longer of complete submergence caused by Monsoon rains.

In the current work, the researchers performed their experiments on Arabidopsis, a small flowering plant used widely in plant biology laboratories as a model organism. SUB1A-like proteins are present in other plants, including Arabidopsis. While the protein turnover mechanism targets SUB1A-like proteins in Arabidopsis, the researchers found, to their surprise, that rice SUB1A is resistant to the protein turnover mechanism.

"We think that SUB1A's ability to evade destruction by the protein turnover mechanism under normal oxygen levels may allow it to provide its benefit to submerged rice plants," Bailey-Serres said. "The SUB1A gene is switched on by ethylene gas that accumulates inside cells during submergence. Since the protein does not require a scarcity of oxygen to be stable, it can go to work early to aid the plant."

Holdsworth, an international expert in seed biology and a protein turnover mechanism called the "N-end rule pathway of targeted proteolysis," had the first hint of the discovery while investigating the regulation of gene expression during seed germination. He connected the N-end rule pathway to the Arabidopsis SUB1A-like proteins and their regulation of genes associated with low oxygen stress that Bailey-Serres has studied extensively in Arabidopsis.

"The puzzle pieces fell quickly into place when the expertise of the two teams was combined," he said.

The research team expects that over the next decade scientists will be able to manipulate the protein turnover mechanism in a wide range of crops prone to damage by flooding.

Bailey-Serres and Holdsworth and were joined in the study by Seung Cho Lee (co-first author), a graduate student, and Takeshi Fukao, an associate specialist in botany and plant sciences, at UCR; Daniel Gibbs (co-first author), Nurukhikma Md Isa, Silvia Gramuglia, George W. Bassel, and Cristina Sousa Correia at The University of Nottingham; Francoise Corbineau at the Université Pierre & Marie Curie, France; and Frederica L. Theodoulou at Rothamsted Research, United Kingdom.

Bailey-Serres's group was supported by grants from the US Department of Agriculture National Institute of Food and Agriculture and the US National Science Foundation. Holdsworth's group was funded for this research project by the UK Biotechnology and Biological Sciences Research Council.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>