Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plants Sense Dry Air

16.04.2013
If the ambient air is very dry, plants need to protect themselves against excessive loss of water. For this purpose, they close special pores in their leaves. University of Würzburg researchers have explored how plants sense changes in humidity and translate this information into a signal.
Plants exchange gases, such as carbon dioxide and oxygen, with the atmosphere via special openings in their leaves, known as stomata. A ring-shaped arrangement of two so-called guard cells works like a swim ring: When the cells are swollen, they form an open ring; when the internal pressure drops, they shrink and the pore closes again.

In low humidity conditions, when there is a shortage of water, plants always face the following dilemma: Of course, they need to open their stomata as wide as possible in order to obtain carbon dioxide for photosynthesis, but at the same time they should close their stomata in order to prevent the risk of losing too much water in the form of water vapor.

Finely adjusted regulatory system of control signals

As a matter of fact, plants possess various partly overlapping mechanisms for ordering the stomata to open or close. The search for an ideal compromise under the respective conditions is subject to precise control. Professor Rainer Hedrich and his colleague, Dr. Peter Ache at the Department for Molecular Plant Physiology and Biophysics of the University of Würzburg, have gained new insight into this finely adjusted regulatory system and published their research in the journal Molecular Plant. The researchers used the well-understood genetic model organism Arabidopsis, also known as thale cress, in order to explore how the plants sense changes in humidity and translate this information into a chemical signal.

In a study published last November, Hedrich and Ache had already shown that guard cells can respond directly and independently to low humidity by producing the stress hormone abscisic acid (ABA). "ABA induces the guard cells to release salts from the cell inside. As a consequence, water flows outward and the guard cells shrink, which leads to stomatal closure," Rainer Hedrich explains.

Research on genetically modified plants

The two Würzburg researchers have now examined plants in which this signaling pathway is compromised due to mutation. "We worked with plants with a defect in an important switch gene," says Peter Ache. When compared with wild type plants, the activities of 100 genes were affected in each case by these mutations.

The researchers investigated which of these genes were preferentially expressed in guard cells and which of them responded to both the abscission hormone ABA and to dry air. They finally narrowed down the genes fulfilling all these criteria in both mutants to a total of four. "We consider these genes extremely important for stomatal response to reduced humidity," says Peter Ache.

The role of sugar molecules

One of these genes is also of crucial importance in the sugar metabolism of the guard cells. "It has long been our assumption that sugar plays an important role in stomatal closure due to dry air," Rainer Hedrich points out. Two scenarios are conceivable, which are not necessarily mutually exclusive:

"Firstly, the cell wall is amply equipped with sugar molecules, which attract water molecules. If this water is withdrawn due to dry air, the solubility of the cell wall sugars changes. This signal can be directly transmitted into the cell. Secondly, dry air may trigger the quick release of osmotically active sugars from the guard cells, leading to the release of water and to stomatal closure," the scientist explains.

The Würzburg plant biologists are going to tackle the open questions about the role of sugar in the dry air response mechanism by means of mutants with alterations in guard cell sugar metabolism and transport.

In their current study, for instance, Hedrich and Ache have already examined mutants in which the function of the sucrose synthase gen SUS3 is compromised. In their experiment, they investigated whether the genetic defect affects the ABA effect in low humidity conditions. This is in fact the case.

A new detail in a complex network

"The fact that some of the genes in the respective mutants are still activated, but others are not, supports our hypothesis that the respective proteins must be centrally involved in the humidity signaling pathway and that sugars play an important role in the process. Thus, we have made some headway in clarifying the whole network and identifying the possible humidity sensing mechanism," Peter Ache says with satisfaction.

Within the Bavarian research association ForPlanta, "Plants fit for the future", Hedrich and his colleagues have already used some other stimuli to induce stomatal closure and to analyze the respective changes in gene activity. They now intend to decipher the whole network with the help of bioinformatics. As to his future plans, Hedrich says: "When we have developed an understanding of stomatal closure due to dry air, we shall lock at the opposite stomatal response, namely the regulation of stomatal aperture".

"How do stomata sense reductions in atmospheric relative humidity?“, Hubert Bauer, Peter Ache, Florian Wohlfart, Khaled A.S. Al-Rasheid, Sophia Sonnewald, Uwe Sonnewald, Susanne Kneitz, Alistair M. Hetherington, and Rainer Hedrich. Mol. Plant, DOI:10.1093/mp/sst055

Contact
Prof. Dr. Rainer Hedrich, Department for Molecular Plant Physiology and Biophysics of the University of Würzburg , T +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>