Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Plants Sense Dry Air

If the ambient air is very dry, plants need to protect themselves against excessive loss of water. For this purpose, they close special pores in their leaves. University of Würzburg researchers have explored how plants sense changes in humidity and translate this information into a signal.
Plants exchange gases, such as carbon dioxide and oxygen, with the atmosphere via special openings in their leaves, known as stomata. A ring-shaped arrangement of two so-called guard cells works like a swim ring: When the cells are swollen, they form an open ring; when the internal pressure drops, they shrink and the pore closes again.

In low humidity conditions, when there is a shortage of water, plants always face the following dilemma: Of course, they need to open their stomata as wide as possible in order to obtain carbon dioxide for photosynthesis, but at the same time they should close their stomata in order to prevent the risk of losing too much water in the form of water vapor.

Finely adjusted regulatory system of control signals

As a matter of fact, plants possess various partly overlapping mechanisms for ordering the stomata to open or close. The search for an ideal compromise under the respective conditions is subject to precise control. Professor Rainer Hedrich and his colleague, Dr. Peter Ache at the Department for Molecular Plant Physiology and Biophysics of the University of Würzburg, have gained new insight into this finely adjusted regulatory system and published their research in the journal Molecular Plant. The researchers used the well-understood genetic model organism Arabidopsis, also known as thale cress, in order to explore how the plants sense changes in humidity and translate this information into a chemical signal.

In a study published last November, Hedrich and Ache had already shown that guard cells can respond directly and independently to low humidity by producing the stress hormone abscisic acid (ABA). "ABA induces the guard cells to release salts from the cell inside. As a consequence, water flows outward and the guard cells shrink, which leads to stomatal closure," Rainer Hedrich explains.

Research on genetically modified plants

The two Würzburg researchers have now examined plants in which this signaling pathway is compromised due to mutation. "We worked with plants with a defect in an important switch gene," says Peter Ache. When compared with wild type plants, the activities of 100 genes were affected in each case by these mutations.

The researchers investigated which of these genes were preferentially expressed in guard cells and which of them responded to both the abscission hormone ABA and to dry air. They finally narrowed down the genes fulfilling all these criteria in both mutants to a total of four. "We consider these genes extremely important for stomatal response to reduced humidity," says Peter Ache.

The role of sugar molecules

One of these genes is also of crucial importance in the sugar metabolism of the guard cells. "It has long been our assumption that sugar plays an important role in stomatal closure due to dry air," Rainer Hedrich points out. Two scenarios are conceivable, which are not necessarily mutually exclusive:

"Firstly, the cell wall is amply equipped with sugar molecules, which attract water molecules. If this water is withdrawn due to dry air, the solubility of the cell wall sugars changes. This signal can be directly transmitted into the cell. Secondly, dry air may trigger the quick release of osmotically active sugars from the guard cells, leading to the release of water and to stomatal closure," the scientist explains.

The Würzburg plant biologists are going to tackle the open questions about the role of sugar in the dry air response mechanism by means of mutants with alterations in guard cell sugar metabolism and transport.

In their current study, for instance, Hedrich and Ache have already examined mutants in which the function of the sucrose synthase gen SUS3 is compromised. In their experiment, they investigated whether the genetic defect affects the ABA effect in low humidity conditions. This is in fact the case.

A new detail in a complex network

"The fact that some of the genes in the respective mutants are still activated, but others are not, supports our hypothesis that the respective proteins must be centrally involved in the humidity signaling pathway and that sugars play an important role in the process. Thus, we have made some headway in clarifying the whole network and identifying the possible humidity sensing mechanism," Peter Ache says with satisfaction.

Within the Bavarian research association ForPlanta, "Plants fit for the future", Hedrich and his colleagues have already used some other stimuli to induce stomatal closure and to analyze the respective changes in gene activity. They now intend to decipher the whole network with the help of bioinformatics. As to his future plans, Hedrich says: "When we have developed an understanding of stomatal closure due to dry air, we shall lock at the opposite stomatal response, namely the regulation of stomatal aperture".

"How do stomata sense reductions in atmospheric relative humidity?“, Hubert Bauer, Peter Ache, Florian Wohlfart, Khaled A.S. Al-Rasheid, Sophia Sonnewald, Uwe Sonnewald, Susanne Kneitz, Alistair M. Hetherington, and Rainer Hedrich. Mol. Plant, DOI:10.1093/mp/sst055

Prof. Dr. Rainer Hedrich, Department for Molecular Plant Physiology and Biophysics of the University of Würzburg , T +49 (0)931 31-86100,

Gunnar Bartsch | idw
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>