Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants recycle too

14.02.2014
A research team has identified a new protein complex which is crucial for endocytosis in plants

Cells communicate through proteins embedded in their cell membranes. These proteins have diverse functions and can be compared with antennas, switches and gates.


Only with the help of the TPLATE-complex of eight different proteins plants are able to take up material from the outside via endocytosis.

copyright: Clara Sanchez Rodriguez/MPI-MP

For the well-being of the cell, it has to adjust the composition of its membrane proteins and lipids constantly. New proteins are incorporated, while old proteins get recycled or eliminated. The process by which membrane material gets internalized is called endocytosis.

A research team headed by Daniël van Damme, Geert De Jaeger from VIB and Ghent University (Belgium) and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Golm near Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis in plants. This finding has now been published in the scientific journal Cell.

Take up and recycle
Plants and animals are made up of billions of cells. For the optimal functioning of organisms, cells must receive information from their neighboring cells and from their surroundings. Cells communicate through proteins anchored in their membranes. These can be receptors, which function as antennas or switches to detect the presence of certain molecules, or transport proteins, which act as gates to control the uptake of nutrients. To optimize the communication, the cell needs to adjust the composition of its membrane at any time. The process by which new membrane proteins are sent to the membrane is called exocytosis. The opposite process, which is needed to take up membrane material, is called endocytosis. To initiate endocytosis, adaptor proteins need to recognize specific areas of the membrane to be internalized. Proteins that encage this membrane area are subsequently recruited. As a result, a small portion of the membrane will then invaginate and ultimately pinch off to produce a vesicle inside the cell. Membrane proteins incorporated in such vesicles can then be degraded, recycled or transported to other parts of the cell.
The TPLATE complex shows the way
For several decades, endocytosis has been heavily investigated in plants, animals and yeast. This has resulted in a wealth of information about the many proteins involved, but also about the complex interactions between them. Nevertheless, only a few adaptor-related components have been found in plants. Using state-of-the-art techniques, researchers of VIB, Ghent University and the Max-Planck-Institute in Potsdam-Golm have now identified an adaptor protein complex which is essential for endocytosis and which only exists in plants. The complex is built of the protein TPLATE and seven previously unknown proteins. The TPLATE complex turned out to be key for plant endocytosis as it arrives first at the position where endocytosis should get initiated. In terms of evolution, the plant specificity of the TPLATE complex was a surprising discovery. While proteins involved in endocytosis, such as clathrin, are conserved across the animal and plant kingdoms, the members of the TPLATE complex appears specially designed for plants. These research results are now published in the prestigious scientific journal Cell thanks to intense collaboration between VIB and the Max-Planck-Institute.
Astrid Gadeyne, Clara Sánchez-Rodríguez, et al.
The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants
Cell, online publication
Contact
For VIB and Ghent University
Dr. Daniël Van Damme – daniel.vandamme@psb.ugent.be Tel. +32 (0)9 33 13 913
Prof. Geert De Jaeger – geert.dejaeger@psb.ugent.be Tel. + 32 (0)9 33 13 870
For the Max-Planck-Institute Potsdam-Golm
Dr. Staffan Persson – Persson@mpimp-golm.mpg.de Tel. +49 (0)331 567 8155
Dr. Clara Sanchez-Rodriguez – Rodriguez@mpimp-golm.mpg.de Tel. +49 (0)331 567 8151
VIB
VIB is a non-profit research institute in life sciences. About 1,300 scientists conduct strategic basic research on the molecular mechanisms that are responsible for the functioning of the human body, plants, and microorganisms. Through a close partnership with four Flemish universities − UGent, KU Leuven, University of Antwerp, and Vrije Universiteit Brussel − and a solid funding program, VIB unites the forces of 76 research groups in a single institute. The goal of the research is to extend the boundaries of our knowledge of life. Through its technology transfer activities, VIB translates research results into products for the benefit of consumers and patients and contributes to new economic activity. VIB develops and disseminates a wide range of scientifically substantiated information about all aspects of biotechnology. More information: http://www.vib.be.
Ghent University
After more than twenty years of uninterrupted growth, Ghent University is now one of the most important institutions of higher education and research in the Low Countries. Ghent University yearly attracts over 35,000 students, with a foreign student population of over 2,200 EU and non-EU citizens. Ghent University offers a broad range of study programs in all academic and scientific fields. With a view to cooperation in research and community service, numerous research groups, centers and institutes have been founded over the years. For more information http://www.UGent.be.
The Max-Planck-Institute
The Max Planck Institute of Molecular Plant Physiology belongs to the Max Planck Society, Germany's most successful research organization. The Institute conducts basic research and investigates metabolic and molecular processes in plant cells, tissues, organs and whole plants. The overall goal is to understand how metabolism and growth are regulated, to learn how they respond to environmental factors, and to unravel genetic factors that underlie these processes and responses. The institute is organised into three departments each led by a director. Within the departments, young scientists lead their own research groups. Currently 21 groups conduct cutting edge research. About 400 employees from all over the world work at the MPIMP.

Weitere Informationen:

http://www.vib.be
http://www.UGent.be
http://www.mpimp-golm.mpg.de/2168/en

Ursula Ross-Stitt | Max-Planck-Institut
Further information:
http://www.mpimp-golm.mpg.de/2168/en

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>