Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants put down roots

16.03.2010
Tübingen-based developmental geneticists research organ development in the plant embryo

In the beginning is the fertilized egg cell. Following numerous cell divisions, it then develops into a complex organism with different organs and tissues. The largely unexplained process whereby the cells simply "know" the organs into which they should later develop is an astonishing phenomenon. Scientists from the Center for Plant Molecular Biology (ZMBP) of the University of Tübingen and the University of Wageningen, in cooperation with colleagues from the Max Planck Institute for Developmental Biology, have investigated how this process is controlled. Based on their studies of the thale cress, Arabidopsis thaliana, they have succeeded in demonstrating how the plant forms its first roots: the root founder cell in the tiny group of cells contained in the seed is activated by a combination of a plant hormone and a transcription factor. These insights could contribute to the breeding of plants with a particularly effective root system in the future. (Nature, advance online publication on March 10, 2010)

In the seed of the thale cress, the embryo forms from the fertilised egg cell that initially divides into two daughter cells. One of these two cells later goes on to form almost the entire embryo, while the other generates connective tissue that anchors the embryo in the endosperm or nutritive tissue. When the embryo has grown into a small cluster of cells, the connective tissue cell that borders the embryo is stimulated by activating signals to become part of the embryo and form the root tissue. The scientists studied these processes in detail under the supervision of Gerd Jürgens and Dolf Weijers and succeeded in identifying several of the players involved in this complex regulatory network.

The formation of the root tissue depends firstly on the accumulation of the plant hormone auxin, which is channelled to the root founder cell by the embryo. This process is reinforced by the transcription factor MONOPTEROS. However, this is not sufficient on its own. The researchers concluded that MONOPTEROS must deliberately activate other genes. In a comprehensive survey of all of the genes activated by MONOPTEROS, they identified two genes that already play a role in embryonic development: TMO5 and TMO7 (TMO = Target of MONOPTEROS). Both of these genes are required for the formation of the root tissue. For this purpose, the protein formed by the TMO7 gene must migrate from the location of its emergence in the embryo to the root founder cell. "With TM07 we have identified a hitherto unknown intercellular signal for root formation in the embryo," says Gerd Jürgens. The detective work in the plant researchers’ genetics laboratory does not end here, however. "Because the transcription factor TM07 is involved in other regulatory network of plant development, there can be no doubt that it holds further insights in store for us," says Jürgens.

Original work:

Alexandra Schlereth, Barbara Möller, Weilin Liu, Marika Kientz, Jacky Flipse, Eike H. Rademacher, Markus Schmid, Gerd Jürgens und Dolf Weijers
MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.

Nature, advance online publication on March 10th, 2010, doi 10.1038/nature08836

Contact:

Prof. Dr. Gerd Jürgens
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 29-78887 and +49 7071 601-1309
E-mail: gerd.juergens@zmbp.uni-tuebingen.de
Dr. Susanne Diederich (Public Relations Department)
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 601-333
E-mail: presse@tuebingen.mpg.de

Barbara Abrell | EurekAlert!
Further information:
http://www.mpg.de/english/illustrationsDocumentation/documentation/pressReleases/2010/pressRelease20100226/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>