Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How plants put down roots

Tübingen-based developmental geneticists research organ development in the plant embryo

In the beginning is the fertilized egg cell. Following numerous cell divisions, it then develops into a complex organism with different organs and tissues. The largely unexplained process whereby the cells simply "know" the organs into which they should later develop is an astonishing phenomenon. Scientists from the Center for Plant Molecular Biology (ZMBP) of the University of Tübingen and the University of Wageningen, in cooperation with colleagues from the Max Planck Institute for Developmental Biology, have investigated how this process is controlled. Based on their studies of the thale cress, Arabidopsis thaliana, they have succeeded in demonstrating how the plant forms its first roots: the root founder cell in the tiny group of cells contained in the seed is activated by a combination of a plant hormone and a transcription factor. These insights could contribute to the breeding of plants with a particularly effective root system in the future. (Nature, advance online publication on March 10, 2010)

In the seed of the thale cress, the embryo forms from the fertilised egg cell that initially divides into two daughter cells. One of these two cells later goes on to form almost the entire embryo, while the other generates connective tissue that anchors the embryo in the endosperm or nutritive tissue. When the embryo has grown into a small cluster of cells, the connective tissue cell that borders the embryo is stimulated by activating signals to become part of the embryo and form the root tissue. The scientists studied these processes in detail under the supervision of Gerd Jürgens and Dolf Weijers and succeeded in identifying several of the players involved in this complex regulatory network.

The formation of the root tissue depends firstly on the accumulation of the plant hormone auxin, which is channelled to the root founder cell by the embryo. This process is reinforced by the transcription factor MONOPTEROS. However, this is not sufficient on its own. The researchers concluded that MONOPTEROS must deliberately activate other genes. In a comprehensive survey of all of the genes activated by MONOPTEROS, they identified two genes that already play a role in embryonic development: TMO5 and TMO7 (TMO = Target of MONOPTEROS). Both of these genes are required for the formation of the root tissue. For this purpose, the protein formed by the TMO7 gene must migrate from the location of its emergence in the embryo to the root founder cell. "With TM07 we have identified a hitherto unknown intercellular signal for root formation in the embryo," says Gerd Jürgens. The detective work in the plant researchers’ genetics laboratory does not end here, however. "Because the transcription factor TM07 is involved in other regulatory network of plant development, there can be no doubt that it holds further insights in store for us," says Jürgens.

Original work:

Alexandra Schlereth, Barbara Möller, Weilin Liu, Marika Kientz, Jacky Flipse, Eike H. Rademacher, Markus Schmid, Gerd Jürgens und Dolf Weijers
MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.

Nature, advance online publication on March 10th, 2010, doi 10.1038/nature08836


Prof. Dr. Gerd Jürgens
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 29-78887 and +49 7071 601-1309
Dr. Susanne Diederich (Public Relations Department)
Max Planck Institute for Developmental Biology, Tübingen
Tel.: +49 7071 601-333

Barbara Abrell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>