Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants provide accurate low-cost alternative for diagnosis of West Nile Virus

While the United States has largely been spared the scourge of mosquito-borne diseases endemic to the developing world—including yellow fever, malaria and dengue fever—mosquito-related illnesses in the US are on the rise. One pathogen of increasing concern in the U.S. is an arbovirus known as West Nile.

Now Qiang “Shawn” Chen, a researcher at Arizona State University’s Biodesign Institute and a professor in the College of Technology and Innovation has developed a new method of testing for West Nile, using plants to produce biological reagents for detection and diagnosis.

The new research, conducted by Chen and his colleagues at the Center for Infectious Diseases and Vaccinology recently appeared in the Journal of Biomedicine and Biotechnology.

“One critical issue in WNV diagnosis concerns the difficulty of distinguishing WNV infection from other closely related diseases, such as St. Louis encephalitis and dengue fever, due to the cross-reactivity of antibodies among flaviviruses,” Chen says. “It is important to develop better diagnostic tools with enhanced accuracy for both treatment and diagnostic purposes.”

Thus far, the 2012 outbreak of West Nile in the United States is on track to be one of the worst on record. According to the Center for Disease Control, 48 states have reported West Nile virus infections in people, birds, or mosquitoes as of October 9th of this year.

To date, 4,249 cases of West Nile virus disease have been reported in humans, including 168 deaths. Of these cases 2,123 (50 percent) appeared in the more severe or neuroinvasive form of the disease, causing meningitis and encephalitis, while 2,126 cases were classified as non-neuroinvasive.

These figures represent the highest number of West Nile cases reported to the CDC since 2003, with nearly 70 percent reported from eight states: Texas, California, Louisiana, Mississippi, South Dakota, Michigan, Oklahoma, and Illinois. Over a third of total cases have been reported from Texas.

The alarming upswing in West Nile cases coupled with their broad geographic distribution demand new techniques for both diagnosis and treatment. Chen and his colleagues have been exploiting the power of plant biotechnology to achieve these goals.

Earlier, Chen’s group developed the first successful plant-derived therapeutic to combat West Nile post-infection, reporting their results in the Proceedings of the National Academy of Science. The current study advances efforts to create a diagnostic test for West Nile that will overcome barriers of existing methods, including limited accuracy, prohibitive cost and scalability.

In nearly all cases, West Nile is transmitted to humans through the bite of an infected mosquito. Mosquitoes acquire the virus after feeding on infected birds. The virus then migrates to the mosquito's salivary glands, from which it may be injected into humans and animals. There, it can multiply and produce characteristic symptoms of West Nile disease. These may present as flu-like malaise including fever and chills, headaches, fatigue and pain in muscles and joints. Symptoms typically last three to six days, but may persist for weeks.

In around 1 in 150 WNV cases, individuals develop infections of the brain (encephalitis) or surrounding tissue (meningitis), often producing severe headache, fever, stiffness, confusion, convulsions, coma, tremors, muscle weakness and paralysis. Those with neurologic involvement may require weeks of hospitalization and may suffer permanent health effects including muscle weakness and paralysis. Around 10 percent of people with WNV encephalitis die.

Faced with the growing threat of mosquito-borne epidemics, researchers like Chen stress the necessity of developing rapid, low-cost platforms for diagnosis of West Nile. Traditionally, cell cultures from serum, cerebrospinal fluid or tissues have been examined but the short viremic phase and low viral count of WNV in blood and spinal fluid limit the sensitivity and accuracy of such tests. Protein-based methods like ELISA have become standard tests for West Nile, yielding better results but at considerably higher cost and with limited scalability.

In the current study, plants were exploited for their ability to produce large volumes of proteins that can be used for diagnostic testing. As Chen explains, proteins produced in this way traditionally require a lengthy time period before transgenic plant lines can be established. By contrast, the new method, which makes use of plant viral-based vectors like Tobacco Mozaic Virus and Gemini Virus, relies on the ability of plants to transiently express particular target genes, yielding the desired protein in 1-2 weeks.

The technique provides the speed and flexibility of a bacterial gene expression system while permitting the posttranslational modifications of proteins afforded by mammalian cell culture approaches.

Chen’s group used plant transient expression systems to produce two varieties of protein reagents useful for the detection and diagnosis of WNV—one a recombinant antigen and one a monoclonal antibody. High expression levels of both reagents were observed in two kinds of plants: Nicotiana benthamiana (a close relative of tobacco) and lettuce. The two reagents may be readily purified to greater than 95 percent and retain their native functionality and specificity.

The production of plant-derived antigens and monoclonal antibodies offers an attractive alternative to the use of mammalian, insect or bacterial cell cultures and demonstrates the capability of plants to provide accurate and flexible diagnostic reagents not only for WNV but a broad range of arboviruses affecting human health.

“Our test will improve the accuracy of diagnosis, leading to the proper treatment of patients affected by WNV,” Chen says. “The plant-derived monoclonal antibody we examined is not only low-cost, but highly specific for WNV antigen and does not recognize antigens from other flaviviruses.” Chen further notes that application of this research will ultimately allow a broad range of WNV surveillance capabilities, from clinical diagnosis to global distribution patterns in wild bird and mosquito populations.

Click to read the study

Richard.Harth | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>