Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants prefer their kin, but crowd out competition when sharing a pot with strangers

18.11.2009
Plants don't mind sharing space with their kin but when they're potted with strangers of the same species they start invigorating their leaves, a study by McMaster University reveals.

The research, which appears in the current issue of the American Journal of Botany, suggests non-kin plants will not only compete underground for soil nutrients, but will attempt to muscle out the competition above ground in the ongoing struggle for light.

It follows previous research from McMaster University which found that plants can recognize their kin through root systems and will compete more strongly for soil nutrients and water with non-sibling plants.

"This is the first study that shows plants are responding to kin at the above ground level," explains Guillermo Murphy, lead author of the study and a graduate student in the Department of Biology at McMaster University. "When they recognize their kin, they grow differently in shape, taller, with more branches and fewer resources into leaves, therefore allowing their siblings to access precious sunlight."

When researchers planted seedlings of a North American species of shade-loving Impatiens in the same pot, they reacted mildly with other offspring from the same mother plant. But when planted among non-kin of the same species, the plants shift extra resources into growing leaves.

"This supports previous research that plants are capable of complex social behaviour and will exhibit altruistic behaviour, giving their siblings a competitive edge in the wild," says Murphy.

In a previous study, led by Susan Dudley, associate professor of biology at McMaster, the Great Lakes sea rocket or Cakile edentula, which flourishes on beaches, showed altruistic behavior among its kin at the root level. When nearby strangers were detected, the sea rocket shifted resources to roots, fighting for precious water and soil nutrients.

This all makes sense on an ecological level, says Murphy. Sea rockets would have easy access to sunlight in its natural beach habitat and therefore, would struggle for nutrients underground. Conversely, Impatiens thrive in the shady woodlands, where moisture is plentiful, but sunlight is scarce.

The roots seem to tell siblings from strangers, he says, whether the change in behaviour is above or below ground. But simply placing them beside one another, in separate pots, did not produce the same results.

In the lab, researchers germinated the seeds from Impatiens collected in the field, to ensure they were properly grouped by sibling and non-siblings.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 140,000 alumni in 128 countries.

For more information contact:

Guillermo Murphy
Graduate Student, Department of Biology
McMaster University
905-741-0772 (cell)
905-528-3103 (home)
murphygp@mcmaster.ca
Michelle Donovan
Public Relations Manager: Broadcast Media
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca
Jane Christmas
Manager, Public & Media Relations
McMaster University
905-525-9140 ext. 27988
chrisja@mcmaster.ca

Michelle Donovan | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>