Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants prefer their kin, but crowd out competition when sharing a pot with strangers

18.11.2009
Plants don't mind sharing space with their kin but when they're potted with strangers of the same species they start invigorating their leaves, a study by McMaster University reveals.

The research, which appears in the current issue of the American Journal of Botany, suggests non-kin plants will not only compete underground for soil nutrients, but will attempt to muscle out the competition above ground in the ongoing struggle for light.

It follows previous research from McMaster University which found that plants can recognize their kin through root systems and will compete more strongly for soil nutrients and water with non-sibling plants.

"This is the first study that shows plants are responding to kin at the above ground level," explains Guillermo Murphy, lead author of the study and a graduate student in the Department of Biology at McMaster University. "When they recognize their kin, they grow differently in shape, taller, with more branches and fewer resources into leaves, therefore allowing their siblings to access precious sunlight."

When researchers planted seedlings of a North American species of shade-loving Impatiens in the same pot, they reacted mildly with other offspring from the same mother plant. But when planted among non-kin of the same species, the plants shift extra resources into growing leaves.

"This supports previous research that plants are capable of complex social behaviour and will exhibit altruistic behaviour, giving their siblings a competitive edge in the wild," says Murphy.

In a previous study, led by Susan Dudley, associate professor of biology at McMaster, the Great Lakes sea rocket or Cakile edentula, which flourishes on beaches, showed altruistic behavior among its kin at the root level. When nearby strangers were detected, the sea rocket shifted resources to roots, fighting for precious water and soil nutrients.

This all makes sense on an ecological level, says Murphy. Sea rockets would have easy access to sunlight in its natural beach habitat and therefore, would struggle for nutrients underground. Conversely, Impatiens thrive in the shady woodlands, where moisture is plentiful, but sunlight is scarce.

The roots seem to tell siblings from strangers, he says, whether the change in behaviour is above or below ground. But simply placing them beside one another, in separate pots, did not produce the same results.

In the lab, researchers germinated the seeds from Impatiens collected in the field, to ensure they were properly grouped by sibling and non-siblings.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 140,000 alumni in 128 countries.

For more information contact:

Guillermo Murphy
Graduate Student, Department of Biology
McMaster University
905-741-0772 (cell)
905-528-3103 (home)
murphygp@mcmaster.ca
Michelle Donovan
Public Relations Manager: Broadcast Media
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca
Jane Christmas
Manager, Public & Media Relations
McMaster University
905-525-9140 ext. 27988
chrisja@mcmaster.ca

Michelle Donovan | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>