Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants prefer their kin, but crowd out competition when sharing a pot with strangers

18.11.2009
Plants don't mind sharing space with their kin but when they're potted with strangers of the same species they start invigorating their leaves, a study by McMaster University reveals.

The research, which appears in the current issue of the American Journal of Botany, suggests non-kin plants will not only compete underground for soil nutrients, but will attempt to muscle out the competition above ground in the ongoing struggle for light.

It follows previous research from McMaster University which found that plants can recognize their kin through root systems and will compete more strongly for soil nutrients and water with non-sibling plants.

"This is the first study that shows plants are responding to kin at the above ground level," explains Guillermo Murphy, lead author of the study and a graduate student in the Department of Biology at McMaster University. "When they recognize their kin, they grow differently in shape, taller, with more branches and fewer resources into leaves, therefore allowing their siblings to access precious sunlight."

When researchers planted seedlings of a North American species of shade-loving Impatiens in the same pot, they reacted mildly with other offspring from the same mother plant. But when planted among non-kin of the same species, the plants shift extra resources into growing leaves.

"This supports previous research that plants are capable of complex social behaviour and will exhibit altruistic behaviour, giving their siblings a competitive edge in the wild," says Murphy.

In a previous study, led by Susan Dudley, associate professor of biology at McMaster, the Great Lakes sea rocket or Cakile edentula, which flourishes on beaches, showed altruistic behavior among its kin at the root level. When nearby strangers were detected, the sea rocket shifted resources to roots, fighting for precious water and soil nutrients.

This all makes sense on an ecological level, says Murphy. Sea rockets would have easy access to sunlight in its natural beach habitat and therefore, would struggle for nutrients underground. Conversely, Impatiens thrive in the shady woodlands, where moisture is plentiful, but sunlight is scarce.

The roots seem to tell siblings from strangers, he says, whether the change in behaviour is above or below ground. But simply placing them beside one another, in separate pots, did not produce the same results.

In the lab, researchers germinated the seeds from Impatiens collected in the field, to ensure they were properly grouped by sibling and non-siblings.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 140,000 alumni in 128 countries.

For more information contact:

Guillermo Murphy
Graduate Student, Department of Biology
McMaster University
905-741-0772 (cell)
905-528-3103 (home)
murphygp@mcmaster.ca
Michelle Donovan
Public Relations Manager: Broadcast Media
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca
Jane Christmas
Manager, Public & Media Relations
McMaster University
905-525-9140 ext. 27988
chrisja@mcmaster.ca

Michelle Donovan | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>