Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants mimic scent of pollinating beetles

03.04.2012
The color and scent of flowers and their perception by pollinator insects are believed to have evolved in the course of mutual adaptation.
However, an evolutionary biologist from the University of Zurich has now proved that this is not the case with the arum family at least, which evolved its scent analogously to the pre-existing scents of scarab beetles and thus adapted to the beetles unilaterally. The mutual adaptation between plants and pollinators therefore does not always take place.

Soon, the gardens and fields will be blooming, fragrant and buzzing again. Bees, flies and beetles fly, as they have done for millions of years, from flower to flower in search of food or mates, drawn by flower shapes, colors and the scents of the individual plants. Often, pollinating insects favor certain scents and preferentially visit the flowers in question. Previously, researchers always assumed that floral scents and the fondness of pollinating insects for a specific scent evolved mutually via coevolution of plants and insects. However, the evolutionary biologist Florian Schiestl from the University of Zurich now proves that this was not the case with the arum family and their pollinators.
Scent of the scarab beetle mimicked

Schiestl and a colleague from Bayreuth studied the arum family and one of its pollinators, the scarab beetles. In the beetles, they discovered many scent molecules used for chemical communication that were also found in the plants. Based on a phylogenetic reconstruction, they realized that these scents were already present in the ancestors of today’s scarab beetles. Evidently, these prehistoric scarab beetles already used the same or similar scents back in the Jurassic period to find food or mates. Unlike today’s scarab beetles, these ancestors did not pollinate plants, the first members of the arum family to be pollinated by beetles not appearing until around 40 million years later. “In the course of evolution, the arum family mimicked the scents of scarab beetles to attract pollinating insects more efficiently,” says Schiestl.
Coevolution less common than assumed

In research, coevolution is regarded as a driving force behind the development of a mutual adaptation between two organisms. However, this is not true of the arum family, which developed its scent along the pre-existing communication of scarab beetle scents. “Coevolution between plants and pollinating insects might well be less common than we thought,” Schiestl concludes.

Literature:
Florian P. Schiestl, and Stefan Dötterl. The Evolution of Floral Scent and Olfactory Preferences in Pollinators: Coevolution or Pre-Existing Bias? Evolution. International Journal of Organic Evolution. March 12, 2012. doi: 10.1111/j.1558-5646.20

Contact
Prof. Dr. Florian Schiestl
Institute of Systematic Botany
University of Zurich
Tel. +41 44 634 84 09
E-Mail: florian.schiestl@systbot.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>