Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants self heal

23.05.2011
Identification a master regulator of the response of plants to injury sheds light on organ regeneration

Many animals and plants regenerate tissues or even whole organs after injury. Typically, specialized cells at the wound site revert to a ‘pluripotent’ state–via a process called dedifferentiation—which means they regain the ability to develop into the various cell types required for regeneration.


Figure 1: Arabidopsis plants grown without plant hormones. Compared to the wild-type plants (left) those over expressing WIND1 (right) can exhibit a range of developmental abnormalities including dedifferentiated callus-like cells masses instead of roots and shoots. Copyright : 2011 Akira Iwase and Keiko Sugimoto

The dedifferentiated cells rapidly divide to form a callus from which the damaged tissue or organ will regenerate. Now, a research team from the RIKEN Plant Science Center in Yokohama has identified a master regulator of the response of plants to injury (1).

Developmental biologists have evidence that the mammalian wound response is genetically programmed, involving transcription factors—proteins that regulate gene expression. However, the precise molecular mechanisms underlying the cell dedifferentiation and redifferentiation are poorly understood for both animals and plants, explains team leader Keiko Sugimoto.

Akira Iwase, a senior postdoctoral researcher in Sugimoto’s laboratory, previously identified the transcription factor WIND1 that was expressed in cultured Arabidopsis cells but not in healthy seedlings. His findings suggested that WIND1 might be involved in the wound response. Using transgenic seedlings, Iwase along with Sugimoto and their colleagues have now demonstrated that WIND1 expression increases markedly at wound sites within hours of injury and continues throughout callus development.

Iwase, Sugimoto and colleagues further showed that Arabidopsis seedlings that were genetically engineered to over express WIND1 exhibited a range of developmental abnormalities (Fig. 1). They found that the most severe defects were associated with particularly high levels of WIND1 expression. These included aborted development after germination and the growth of undifferentiated callus-like cell masses at the places where roots or shoots would normally form.

In addition, the researchers found that the callus-like cell masses continued to proliferate rapidly when removed from the plant and grown in culture. This occurred even in the absence in the culture medium of auxin and cytokinin, two plant hormones long known to be involved in the normal regeneration process. Further experiments also confirmed the importance of WIND1 in callus formation in vivo.

The researchers then investigated the mode of action of WIND1. They found that wounding induced a cytokinin response involving increased expression of the so-called ‘B-type Arabidopsis response regulator’ (ARR). Further experiments confirmed that WIND1 acts via the ARR-dependent signaling pathway to promote cell dedifferentiation.

“Our findings clearly demonstrate that WIND1 functions as a key molecular switch triggering cell dedifferentiation in Arabidopsis,” explains Sugimoto. “The discovery of WIND1 should allow us to establish specific role of transcriptional regulators in cell dedifferentiation.”

The corresponding author for this highlight is based at the Cell Function Research Unit, RIKEN Plant Science Center

Journal information

(1) Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K. & Ohme-Takagi, M. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 21, 508–514 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>