Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants give up some deep secrets of drought resistance

In a study that promises to fill in the fine details of the plant world's blueprint for surviving drought, a team of Wisconsin researchers has identified in living plants the set of proteins that help them withstand water stress.

The new study, published today (Aug. 23) in the Proceedings of the National Academy of Sciences, identifies the protein targets in cells of a key hormone that controls how plants respond to environmental stresses such as drought, excessive radiation and cold.

The work, which builds on decades of research with a key plant hormone known as abscisic acid, could help underpin the development of new crop plant strains capable of thriving in hotter, dryer climates. The work is considered important in light of the pressing need to expand and intensify agricultural production on marginal lands worldwide, and especially so in the context of global climate change.

"If we can figure out how this works with crops and make them able to resist drought, the benefits would be enormous," notes Michael Sussman, a University of Wisconsin-Madison professor of biochemistry and the senior author of the new study. "These are the first baby steps to understand the effects of dehydration in plants and it may give us the opportunity to develop crops that can withstand this kind of stress in the field."

Working in the model laboratory plant Arabidopsis, the Wisconsin team explored the influence of abscisic acid, a long-studied hormone that, in addition to influencing how plants respond to environmental stress, controls the naturally occurring processes of seed dormancy and germination.

The hormone has been known to science for 50 years, and was believed to influence certain proteins in cells in a complicated cascade of events that aided the ability of a plant to survive such stresses as dehydration, excessive radiation and cold temperatures. But any plant cell, Sussman explains, contains at least 30,000 different proteins, and the identity of the few proteins activated by the hormone was a deep mystery.

"Since they cannot walk or run, plants have developed an interesting and complicated system for sensing and responding very quickly to dehydration and other stresses," says Sussman, noting that, on average, a plant is composed of 95 percent water. "Most plants have what's called a permanent wilting point, where if water content goes below 90 percent or so, they don't just dehydrate and go dormant, they dehydrate and die."

Figuring out how to trigger a dormant state, such as exists naturally in seeds, which are 10 percent water and can in some cases remain viable for hundreds of years, could be key to creating plants that survive drought in the field, Sussman explains.

The team, which includes postdoctoral fellow Kelli G. Kline and scientist Gregory Barrett-Wilt, utilized a new stable isotope technology and mass spectrometry to comb 5,000 candidate proteins in the cells of living plants and found 50 that were influenced by the abscisic acid hormone. The survey is the first of its kind in a living plant and many of the proteins identified were previously not known to be influenced at all by abscisic acid.

Surprisingly, the hormone was found to regulate some of the plant proteins in a completely different way than was known before, by inhibiting their ability to have a phosphate moiety removed from an amino acid, by a type of enzyme called a protein phosphatase. Protein phosphatases are the opposite side of the coin that catalytic enzymes known as protein kinases occupy. In many important biological processes, such as cancer, it is the protein kinases that are the dominant actors.

The finding that phosphatases play a more critical role in a hormonally regulated system is a new idea in biology discovered through work with plants. Sussman's group's findings indicate that the dynamic interplay between the hormone and the proteins it affects is a more complicated process than previously suspected. "The story is far from complete," says the Wisconsin biochemist. "There is something very interesting, and complicated, going on."

The new study was funded through the U.S. National Science Foundation.

Terry Devitt, 608-262-8282,

Michael Sussman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>