Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do plants fight disease?

29.03.2011
Breakthrough research by UC Riverside plant pathologist offers a clue

How exactly bacterial pathogens cause diseases in plants remains a mystery and continues to frustrate scientists working to solve this problem. Now Wenbo Ma, a young plant pathologist at the University of California, Riverside, has performed research on the soybean plant in the lab that makes major inroads into our understanding of plant-pathogen interactions, a rapidly developing area among the plant sciences.

Her breakthrough research can help scientists come up with effective strategies to treat crops that have succumbed to disease or, when used as a preventative measure, to greatly reduce their susceptibility to disease.

In a paper published in the March issue of the journal Cell Host & Microbe, Ma, an assistant professor of plant pathology and microbiology, and her colleagues show that the bacterial pathogens target isoflavones, a group of compounds in plant cells that defend the plant from bacterial infection, resulting in a reduction in isoflavone production.

An arms race

First, the pathogens inject virulence bacterial proteins, called HopZ1, through needle-like conduits into the plant cells. These proteins then largely reduce the production of the isoflavones and promote disease development. However, by sensing the presence of HopZ1, the plants mount a robust resistance against the pathogen, including the production of a very high amount of isoflavones. At this point, the pathogen must come up with new strategies by either changing the kind of proteins it injects into the plant, not injecting any proteins at all, or injecting virulence proteins in a way that helps them escape detection by the plant. In this way, the virulence bacterial proteins and the plant host engage in an endless "arms race."

"One question we are still trying to answer is how at the molecular level the bacterial virulence proteins promote disease," Ma said. "Some scientists have shown that these proteins block signaling transduction pathways in the plant, which eventually weakens plant immunity. We are introducing a fresh perspective on this topic, namely, that the pathogens evolved strategies to directly attack the production of plant antimicrobial compounds, such as isoflavones, thus compromising the plant's defense mechanism."

Closing the circle

According to Ma, her results can be extrapolated to understand how plants defend themselves when attacked by pathogens. She is pleased to be resuming research first studied by UC Riverside's Noel Keen, the late plant scientist and a pioneer in molecular plant pathology, who did fundamental groundbreaking work on understanding how isoflavones and isoflavone-derived compounds play a role in defending plants against microbial infection.

"This was an important topic of study about 30 years ago, but then the topic was dropped by researchers and it lost momentum," Ma said. "My lab is now revisiting the problem. Of course, we still have many questions to answer. We need to fully understand how isoflavones function to protect plants so that we can design specific strategies aimed at better protecting the plant."

Looking forward

Ma's lab is also interested in understanding what makes pathogens what they are. Why is it that among ecologically similar bacteria, some cause disease while others do not? Her lab is also studying how plants evolve mechanisms to protect themselves from infection, how pathogens subvert this defense and become virulent again.

"Pathogens get wise to the disease-fighting strategies we use in agriculture," Ma said. "This is evolution at work. But with fundamental knowledge on how pathogens cause disease we can develop sustainable and applicable strategies to combat disease."

About Wenbo Ma

Ma received her doctoral degree in biology in 2003 at the University of Waterloo, Canada. Thereafter, she did postdoctoral research for three years at the University of Toronto, Canada. She joined UCR in 2006. Her awards and honors include a Regents' Faculty Fellowship at UCR, a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada, and the W.B. Pearson Medal from the University of Waterloo.

She chose the soybean plant to study because the pathogen she was interested in, Pseudomonas syringae, attacks the soybean plant. Soybean is the second largest crop and the largest agricultural export in the United States. In addition to being an important human and animal food crop, it is also a major feedstock for biodiesel.

Ma was joined in the research by UCR's Huanbin Zhou (first author of the research paper and a postdoctoral researcher in the Ma group), Jian Lin, Aimee Johnson, Robyn Morgan and Wenwan Zhong. Zhong is an assistant professor in the Department of Chemistry.

The research study was supported by grants from the National Science Foundation, UCR-Los Alamos National Laboratory collaborative program for plant diseases and the U.S. Department of Agriculture Experimental Station Research Support Allocation Process.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: UCR bacterial protein plant cell plant disease plant pathology

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>