Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some plants duplicate their DNA to overcome adversity

01.08.2011
Whatever does not kill a plant may actually make it stronger. After being partially eaten by grazing animals, for example, some plants grow bigger and faster and reproduce more successfully than they otherwise would. In a new study, researchers report that one secret to these plants' post-traumatic triumph lies in their ability to duplicate their chromosomes – again and again – without undergoing cell division.

While this process, called "endoreduplication," is not new to science, no previous study had looked at it in relation to the seemingly miraculous burst of growth and reproductive fitness that occurs in many plants after they have been grazed, said University of Illinois animal biology professor Ken Paige, who conducted the study with doctoral student Daniel Scholes.

"If you talk to a molecular biologist, they might know what endoreduplication is, but they haven't looked at it from the perspective of whole plant reproductive success," Scholes said. "We tried to link the two and found out there is a link there."

The study appears in the journal Ecology.

The researchers looked at Arabidopsis thaliana, a flowering plant in the mustard family that repeatedly duplicates its chromosomes in some cell types. The plant begins with only 10 chromosomes – five from each parent – but after repeated duplications, some cells contain up to 320 chromosomes.

The researchers compared the DNA content of two cultivars of A. thaliana that respond very differently to being grazed. Of the 160 specimens of each cultivar studied, half were artificially grazed (by clipping their central stems) and half were not. One of the cultivars, Columbia, rebounded dramatically after clipping, quickly regrowing stems and leaves and producing more seeds than the unclipped plants. In the other cultivar, Landsberg erecta, growth remained steady after clipping and the level of seed production declined.

A look at the number of chromosomes in the tissues of each plant type before and after clipping revealed that Columbia was able to rebound in part by speeding up endoreduplication in some tissues after clipping. Its sister cultivar, Landsberg erecta, however, did not.

"The overall DNA content goes up in one of the cultivars after clipping, but it doesn't change in the other," Paige said. "And we think it's that added boost that increases its reproductive success."

The added DNA content could allow the plants to increase production of proteins that are needed for growth and reproduction, Scholes said. More DNA also means larger cells.

"Because you have more DNA in the nucleus, you must have a greater nuclear volume, which causes your entire cell to get bigger," Scholes said. Increases in the size of individual cells can ultimately lead to an increase in the size of the whole plant.

"We tend to think that what you inherit is what you're stuck with," Scholes said. "But we're finding that plants are increasing what they have, and for the first time we're beginning to understand how they do that, and why."

In earlier studies conducted over 30 years, Paige found that – even in natural settings – plants can evolve the ability to bounce back after grazing.

"We've tracked the plants through generations, so we know that the ones that get eaten actually have up to a three-fold reproductive advantage over the ones that are never eaten," he said. "Now we are beginning to understand the molecular mechanisms that make this possible."

The National Science Foundation and the University of Illinois Research Board funded this study.

Editor's notes: To reach Ken Paige, call 217- 244-6606; email k-paige@illinois.edu.

The paper, "Chromosomal Plasticity: Mitigating the Impacts of Herbivory," is available from the U. of I. News Bureau

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>