Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some plants duplicate their DNA to overcome adversity

01.08.2011
Whatever does not kill a plant may actually make it stronger. After being partially eaten by grazing animals, for example, some plants grow bigger and faster and reproduce more successfully than they otherwise would. In a new study, researchers report that one secret to these plants' post-traumatic triumph lies in their ability to duplicate their chromosomes – again and again – without undergoing cell division.

While this process, called "endoreduplication," is not new to science, no previous study had looked at it in relation to the seemingly miraculous burst of growth and reproductive fitness that occurs in many plants after they have been grazed, said University of Illinois animal biology professor Ken Paige, who conducted the study with doctoral student Daniel Scholes.

"If you talk to a molecular biologist, they might know what endoreduplication is, but they haven't looked at it from the perspective of whole plant reproductive success," Scholes said. "We tried to link the two and found out there is a link there."

The study appears in the journal Ecology.

The researchers looked at Arabidopsis thaliana, a flowering plant in the mustard family that repeatedly duplicates its chromosomes in some cell types. The plant begins with only 10 chromosomes – five from each parent – but after repeated duplications, some cells contain up to 320 chromosomes.

The researchers compared the DNA content of two cultivars of A. thaliana that respond very differently to being grazed. Of the 160 specimens of each cultivar studied, half were artificially grazed (by clipping their central stems) and half were not. One of the cultivars, Columbia, rebounded dramatically after clipping, quickly regrowing stems and leaves and producing more seeds than the unclipped plants. In the other cultivar, Landsberg erecta, growth remained steady after clipping and the level of seed production declined.

A look at the number of chromosomes in the tissues of each plant type before and after clipping revealed that Columbia was able to rebound in part by speeding up endoreduplication in some tissues after clipping. Its sister cultivar, Landsberg erecta, however, did not.

"The overall DNA content goes up in one of the cultivars after clipping, but it doesn't change in the other," Paige said. "And we think it's that added boost that increases its reproductive success."

The added DNA content could allow the plants to increase production of proteins that are needed for growth and reproduction, Scholes said. More DNA also means larger cells.

"Because you have more DNA in the nucleus, you must have a greater nuclear volume, which causes your entire cell to get bigger," Scholes said. Increases in the size of individual cells can ultimately lead to an increase in the size of the whole plant.

"We tend to think that what you inherit is what you're stuck with," Scholes said. "But we're finding that plants are increasing what they have, and for the first time we're beginning to understand how they do that, and why."

In earlier studies conducted over 30 years, Paige found that – even in natural settings – plants can evolve the ability to bounce back after grazing.

"We've tracked the plants through generations, so we know that the ones that get eaten actually have up to a three-fold reproductive advantage over the ones that are never eaten," he said. "Now we are beginning to understand the molecular mechanisms that make this possible."

The National Science Foundation and the University of Illinois Research Board funded this study.

Editor's notes: To reach Ken Paige, call 217- 244-6606; email k-paige@illinois.edu.

The paper, "Chromosomal Plasticity: Mitigating the Impacts of Herbivory," is available from the U. of I. News Bureau

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>