Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants conserve water

03.12.2009
Less rainfall, higher temperatures: plants are also suffering the effects of climate change. How, despite this, they survive longer periods of drought is the subject of research by Rainer Hedrich, a biologist at the University of Würzburg. He presents his findings in the latest issue of the journal Proceedings.

When the heads of government of the UN Member States meet in Copenhagen in December for the world climate summit, one topic will be on the agenda again: climate change. The struggle by politicians to find a way of limiting global warming will also be followed with interest by plant researchers and experts in farming. After all, these people are already seeing the effects of the rise in temperature.

Modern cultivated plants have forgotten how to conserve water

Rainer Hedrich, Chairman of the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, is among those interested in the consequences of protracted periods of drought and rising temperatures for the plant world. "Having been subjected to centuries of cultivation, today's cultivated plants have lost some of their vitality. To put it bluntly, our crops have forgotten how best to conserve water," says Hedrich. This means they would not be able to withstand a global change in climate with lengthy periods of heat and drought.

Hedrich has researched the water balance of plants. His most recent findings are reported in the latest issue of the journal Proceedings of the National Academy of Sciences (USA).

Dilemma attached to water shortage and water loss

Plants extract water from the soil and carbon dioxide from the air, which they use during photosynthesis to produce carbohydrates and oxygen. They release water into the environment in the form of water vapor.

"The release of water vapor as an unavoidable consequence of photosynthesis does not constitute a problem for the plant as long as it has enough water at its disposal," explains Hedrich. However, if rain does not materialize, the plant cannot absorb any more water through its roots and, at the same time, it loses more water to the increasingly dry atmosphere.

However, the plant is not completely defenseless against this dilemma. "Its outer skin, the so-called epidermis, is covered with a layer of wax which is impermeable to water and carbon dioxide," says Hedrich. It is only through microscopically small, controllable pores that the plant can absorb carbon dioxide and release water vapor.

Sensory cells register the water content of the plant

How does this work? "These pores consist of two guard cells. When these expand, the pore opens; when they contract, the pore closes again," explains Hedrich. This process is controlled by the plant drawing specific salts - the positively charged potassium ion and the negatively charged chloride ion - into and out of the guard cell through special channels.

"The anion channels of the guard cells have a crucial role to play in water conservation," comments Hedrich. The plant perceives that the soil is drying out and sends a hormone to the guard cells. Once there, this hormone activates a signal chain that causes the anion channels to open and to set a process in motion that ends with the pores closing.

The sensory cells which are able to recognize water stress also have the ability to measure the concentration of carbon dioxide in the leaf as well as the intensity and composition of sunlight. "This means that the plant is able to keep the pores closed and only open them to absorb carbon dioxide when there is sufficient water and light available for the production of carbohydrates," explains Hedrich.

Consequences for farming

Using precise knowledge of the metabolic processes in plants, Hedrich hopes that it will be possible to make modern cultivated plants able to cope with the requirements of climate change. His interest therefore extends to plants which, like the famous "Rose of Jericho", have become real experts at surviving water shortage. "These extremophiles can even survive after being dried out completely," he says. An exact understanding of this ability could help us to optimize useful plants and crops specifically so that they can cope with global warming.

Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Annette Stange, Irene Marten, Hubert Bauer, Peter Ache, Susanne Matschi, Anja Liese, Khaled A. S. Al-Rasheid, Tina Romeis, and Rainer Hedrich. PNAS, 2009, doi/10.1073/pnas.0912021106

Contact

Prof. Dr. Rainer Hedrich, phone +49 931 3186100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>