Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How plants conserve water

03.12.2009
Less rainfall, higher temperatures: plants are also suffering the effects of climate change. How, despite this, they survive longer periods of drought is the subject of research by Rainer Hedrich, a biologist at the University of Würzburg. He presents his findings in the latest issue of the journal Proceedings.

When the heads of government of the UN Member States meet in Copenhagen in December for the world climate summit, one topic will be on the agenda again: climate change. The struggle by politicians to find a way of limiting global warming will also be followed with interest by plant researchers and experts in farming. After all, these people are already seeing the effects of the rise in temperature.

Modern cultivated plants have forgotten how to conserve water

Rainer Hedrich, Chairman of the Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, is among those interested in the consequences of protracted periods of drought and rising temperatures for the plant world. "Having been subjected to centuries of cultivation, today's cultivated plants have lost some of their vitality. To put it bluntly, our crops have forgotten how best to conserve water," says Hedrich. This means they would not be able to withstand a global change in climate with lengthy periods of heat and drought.

Hedrich has researched the water balance of plants. His most recent findings are reported in the latest issue of the journal Proceedings of the National Academy of Sciences (USA).

Dilemma attached to water shortage and water loss

Plants extract water from the soil and carbon dioxide from the air, which they use during photosynthesis to produce carbohydrates and oxygen. They release water into the environment in the form of water vapor.

"The release of water vapor as an unavoidable consequence of photosynthesis does not constitute a problem for the plant as long as it has enough water at its disposal," explains Hedrich. However, if rain does not materialize, the plant cannot absorb any more water through its roots and, at the same time, it loses more water to the increasingly dry atmosphere.

However, the plant is not completely defenseless against this dilemma. "Its outer skin, the so-called epidermis, is covered with a layer of wax which is impermeable to water and carbon dioxide," says Hedrich. It is only through microscopically small, controllable pores that the plant can absorb carbon dioxide and release water vapor.

Sensory cells register the water content of the plant

How does this work? "These pores consist of two guard cells. When these expand, the pore opens; when they contract, the pore closes again," explains Hedrich. This process is controlled by the plant drawing specific salts - the positively charged potassium ion and the negatively charged chloride ion - into and out of the guard cell through special channels.

"The anion channels of the guard cells have a crucial role to play in water conservation," comments Hedrich. The plant perceives that the soil is drying out and sends a hormone to the guard cells. Once there, this hormone activates a signal chain that causes the anion channels to open and to set a process in motion that ends with the pores closing.

The sensory cells which are able to recognize water stress also have the ability to measure the concentration of carbon dioxide in the leaf as well as the intensity and composition of sunlight. "This means that the plant is able to keep the pores closed and only open them to absorb carbon dioxide when there is sufficient water and light available for the production of carbohydrates," explains Hedrich.

Consequences for farming

Using precise knowledge of the metabolic processes in plants, Hedrich hopes that it will be possible to make modern cultivated plants able to cope with the requirements of climate change. His interest therefore extends to plants which, like the famous "Rose of Jericho", have become real experts at surviving water shortage. "These extremophiles can even survive after being dried out completely," he says. An exact understanding of this ability could help us to optimize useful plants and crops specifically so that they can cope with global warming.

Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Annette Stange, Irene Marten, Hubert Bauer, Peter Ache, Susanne Matschi, Anja Liese, Khaled A. S. Al-Rasheid, Tina Romeis, and Rainer Hedrich. PNAS, 2009, doi/10.1073/pnas.0912021106

Contact

Prof. Dr. Rainer Hedrich, phone +49 931 3186100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>