Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants can do maths

22.01.2016

The carnivorous Venus flytrap carefully plans its meals: It can count how often it is touched by an insect to calculate the digestive effort. This discovery has been made by plant scientists of the University of Würzburg.

Usually, plants are eaten by animals and humans. With carnivorous plants, however, it's the other way round: They have specialised in animals as an extra source of nutrition to help them survive in moors or other nutrient-poor sites.


Insect on a Venus flytrap – it has not snapped shut yet.

(Photo: Sönke Scherzer)

Take the Venus flytrap (Dionaea muscipula) for example: It has a trapping structure formed by the terminal portion of leaves and is triggered by tiny hairs on their inner surface. These sensors allow the plant to discover, catch and digest flies and other fast animals.

The trap's insides are covered by a turf of red glands. This flower-like appearance combined with fruity smells attracts many insects. Looking for nectar, the visitors inevitably touch the three sensor hairs located on each of the lobes. Based on the number of times the trigger hair is stimulated, the plant decides whether to snap the trap closed and start digestion. This means that the plant is capable of counting.

The discovery was made by an international team of researchers around biophysicist Professor Rainer Hedrich from the University of Würzburg. Their work has been published in the renowned journal Current Biology.

Trap closes on "two"

If a trigger hair on the Venus flytrap is stimulated only slightly, it will signal the first prey contact by transmitting a bio-electrical signal. "One signal does not yet cause a reaction – it could be false alarm after all," says Hedrich. But a second stimulation already causes the trap to snap close in the blink of an eye.

If the prey stayed calm now, there would be no other signal. In that case, the trap will open again after a half day. But since the trapped animals usually put up quite a fight, they trigger a virtual fireworks of signals sealing their fate for good.

This is because the Venus flytrap can count further, as Hedrich's colleague Sönke Scherzer found out. He measured that a trapped insect triggers some 60 signals per hour. To imitate the contact stimuli, Scherzer nudged individual sensory hairs up to 60 times in an hour to see what happened.

Digestive juices start to flow from "five"

The result: Two or more stimuli activate the pathway of the contact and wound hormone jasmonate JA. At five and more signals, the plant additionally activates the genes for digestions enzymes in all of its 37,000 glands. This activation does not take place if the jasmonate signal pathway is suppressed in experiments prior to mechanical stimulation. "We have thus proved that the electrical signal is converted into a hormone signal in the glands," Hedrich further.

Five or more signals also stimulate the transport molecules that provide for the absorption of the digested insects into the plant. While searching for this mechanism, one gene caught the attention of Würzburg Ph.D. student Jennifer Böhm. It is activated by both touching the sensory hairs and by the hormone jasmonate. She was able to demonstrate that it is an ion channel which transports sodium. Large quantities of this nutrient salt accrue when the insects are digested.

The plant can also do maths

"We asked ourselves whether the trap can calculate how many channels it must provide to remove the sodium," Hedrich explains. Obviously, the plant is able to do that: The bigger the prey animal, the more fiercely it will struggle and the more frequently the sensory hairs are stimulated. In that case, the Venus flytrap will produce more ion channels than for a weakly struggling animal.

And what about the plant's memory? According to Hedrich, the Venus flytrap can remember the number of prey contacts for at least four hours. Now the researchers want to study the molecular bases of retentivity and learn whether the sensory performance of plants and animals share similar underlying principles.

Funded by the European Research Council

Hedrich's exploration of the Venus flytrap and other carnivorous plants is backed by top-level funding: In 2010, the European Research Council (ERC) allocated him an "Advanced Grant" worth 2.5 million euros for this purpose. Within the scope of the ERC project "Carnivorom", Hedrich's team is on the lookout for those genes that make plants carnivorous.

„The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake“, Böhm, J., Scherzer, S., Krol, E., Kreuzer, I., von Meyer, K., Lorey, C., Mueller, T.D., Shabala, L., Monte, I., Solano, R., Al-Rasheid, K.A.S., Rennenberg, H., Shabala, S., Neher, E., Hedrich, R., Current Biology, January 21, 2015, DOI 10.1016/j.cub.2015.11.057

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I of the University of Würzburg, Phone: +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de


Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: ERC Julius-Maximilians-Universität genes insects jasmonate sensory hairs sodium

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>