Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plants can adapt genetically to survive harsh environments

A Purdue University scientist has found genetic evidence of how some plants adapt to live in unfavorable conditions, a finding he believes could one day be used to help food crops survive in new or changing environments.

David Salt, a professor of horticulture, noticed several years ago that a variant of the research plant Arabidopsis thaliana that could tolerate higher levels of sodium had come from coastal areas. To test the observation, Salt grew more than 300 Arabidopsis thaliana plants from seeds gathered across Europe. The plants were grown in non-saline soil and their leaf-sodium content was measured.

Each plant's origination was mapped, and those with the highest sodium contents were found to have come from seeds collected close to a coast or area with high saline soil. All plants were analyzed using genome-wide association mapping, which compares the genomes of a number of plants with a shared physical trait - in this case leaf sodium accumulation - to identify genes that may account for variation in this characteristic. Salt found that the plants that accumulate the highest sodium levels in their leaves had a weak form of the gene HTK1, which regulates sodium intake distribution to leaves.

"The major gene that is controlling variation in leaf sodium accumulation across the whole European population of Arabidopsis thaliana is HTK1," said Salt, whose findings were published in the journal PLoS Genetics. "The Arabidopsis thaliana plants that accumulated high levels of sodium had a reduced level of HTK1 gene expression. The populations that have this altered form of HTK1 are on the coast. There are a few exceptions that prove the rule, such as populations in the Czech Republic, which isn't near the coast, but come from an area containing high saline soils derived from an ancient beach."

It has long been known that plants are adapted to their local soil environments, but the molecular basis of such adaptation has remained elusive. Salt said this is some of the first evidence linking genetic changes with adaptation to specific environmental factors.

"What we're looking at is evolution in action," Salt said. "It looks like natural selection is matching expression of this gene to the local soil conditions."

Salt said crops grown around the world could be affected, possibly negatively, by climate change. It may become important to identify mechanisms to adapt plants to drought conditions, higher temperatures or changes in soil nutrition. Salt believes identifying genetic mechanisms of how plants naturally adapt to their environments will be key to solving those problems.

"Driven by natural selection, plants have been evolving to grow under harsh conditions for millennia," Salt said. "We need to understand genetically what is allowing these plants to survive these conditions."

Salt plans to continue his research to understand at the DNA level how Arabidopsis thaliana adapts to environmental conditions. The National Institutes of Health funded his work.

Abstract on the reseach in this release is available at:

Brian Wallheimer | EurekAlert!
Further information:

Further reports about: Arabidopsis thaliana HTK1 Plants SALT genetic mechanism natural selection

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>