Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants adapt their defenses to the local pest community

05.10.2012
Populations of the same plant species produce specific defenses that are effective against the predominant local pest community.
Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Populations of the same plant species produce specific defenses that are effective against the predominant local pest community. Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Test set-up of the selection experiment. Different genotypes of Arabidopsis thaliana were exposed to different aphids in parallel. Each individual Plexiglas box simulates a plant population with a particular composition of aphids.

UZH


Detailed view of the selection experiment. Plant populations are harmed to varying degrees by the different aphid species. From left to right: Population without aphids, mustard aphid, cabbage aphid, aphid mixture, mustard aphid, peach aphid.

Herbivorous insects, such as aphids, damage plants and can substantially reduce yields in agricultural settings; however, they can play a major role in maintaining genetic diversity. Ecologists Tobias Züst and Lindsay Turnbull from the University of Zurich together with colleagues from California and Great Britain demonstrated the importance of variation in herbivore communities using the model plant, Arabidopsis thaliana, also known as wall cress. According to Züst, the work is one of the first experimental confirmations of a forty-year-old theory that herbivorous insects exert strong selective pressure on their host plants. Moreover, plants were quick to abandon defense mechanisms when pests were absent, confirming the high costs of these defenses.

Like many other plants, Arabidopsis thaliana, or wall cress, defends itself against pests with a sophisticated chemical arsenal. The pests, however, continually evolve mechanisms to tolerate or metabolize particular chemical components. This means that depending on the abundance of different pest species, different compounds will provide optimal protection, and thus the plant needs to produce a carefully tailored cocktail that will be effective against the most likely attackers. The researchers’ first step was to study the distribution of different chemical defenses in natural populations of Arabidopsis thaliana across Europe and compare it to the geographic distribution of two important pest species: the cabbage and the mustard aphid.

Local pest populations as an evolutionary force
The scientists demonstrate that the main chemical compounds produced by Arabidopsis thaliana in South-western Europe differ from those in North-eastern Europe. This pattern correlates directly with a shift in the composition of the aphid communities. In the second step, the researchers studied experimentally whether different aphid species could directly select for these different chemical compounds under controlled conditions. To this end, they exposed mixed populations of Arabidopsis thaliana to the cabbage and mustard aphid populations typical of North-eastern or South-western Europe. After five plant generations, continuous feeding by the different aphid species led to the selection of different chemical profiles, and these were consistent with the patterns seen in nature. “There is natural variation in chemical defenses which is under genetic control”, explains Züst “and this variation is maintained by geographic variation in the composition of aphid communities”. “Genetic variation is the raw material for evolution”, he continues, “so the maintenance of genetic diversity is essential if populations are to respond to future environmental changes such as climate change or environmental degradation”.
The costs of defense
In the control populations with no aphid feeding, some of the successful genotypes from aphid populations were lost. According to Turnbull, this occurred because defense mechanisms are costly for the plant and often come at the expense of growth: “Genetic diversity was only maintained across the different treatments; within each treatment much of the diversity was lost. In the control populations, this meant the loss of defended genotypes, as here investment in costly defenses brings no benefit to the plant”. Today, the genetic diversity of many plant species is being eroded. For example, agricultural plants are selected for rapid growth and maximum yield at the expense of natural defenses, making the use of pesticides inevitable. In future, the new findings could be used to develop customized seeds that are more resistant to specific local pest communities, thus limiting the use of pesticides.
Further reading:
Tobias Züst, Christian Heichinger, Ueli Grossniklaus, Richard Harrington, Daniel J. Kliebenstein, Lindsay Turnbull. Natural enemies drive geographic variation in plant defenses. Science. October 5, 2012, doi: 10.1126/science.1226397.
Contact:
Dr Tobias Züst
Department of Ecology and Evolutionary Biology
Cornell University
Phone +1 607 319 99 05
e-mail: tobias.zuest@cornell.edu
Dr. Lindsay Turnbull
Institute of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone +41 44 635 61 20
e-mail: lindsay.turnbull@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>