Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants adapt their defenses to the local pest community

05.10.2012
Populations of the same plant species produce specific defenses that are effective against the predominant local pest community.
Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Populations of the same plant species produce specific defenses that are effective against the predominant local pest community. Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Test set-up of the selection experiment. Different genotypes of Arabidopsis thaliana were exposed to different aphids in parallel. Each individual Plexiglas box simulates a plant population with a particular composition of aphids.

UZH


Detailed view of the selection experiment. Plant populations are harmed to varying degrees by the different aphid species. From left to right: Population without aphids, mustard aphid, cabbage aphid, aphid mixture, mustard aphid, peach aphid.

Herbivorous insects, such as aphids, damage plants and can substantially reduce yields in agricultural settings; however, they can play a major role in maintaining genetic diversity. Ecologists Tobias Züst and Lindsay Turnbull from the University of Zurich together with colleagues from California and Great Britain demonstrated the importance of variation in herbivore communities using the model plant, Arabidopsis thaliana, also known as wall cress. According to Züst, the work is one of the first experimental confirmations of a forty-year-old theory that herbivorous insects exert strong selective pressure on their host plants. Moreover, plants were quick to abandon defense mechanisms when pests were absent, confirming the high costs of these defenses.

Like many other plants, Arabidopsis thaliana, or wall cress, defends itself against pests with a sophisticated chemical arsenal. The pests, however, continually evolve mechanisms to tolerate or metabolize particular chemical components. This means that depending on the abundance of different pest species, different compounds will provide optimal protection, and thus the plant needs to produce a carefully tailored cocktail that will be effective against the most likely attackers. The researchers’ first step was to study the distribution of different chemical defenses in natural populations of Arabidopsis thaliana across Europe and compare it to the geographic distribution of two important pest species: the cabbage and the mustard aphid.

Local pest populations as an evolutionary force
The scientists demonstrate that the main chemical compounds produced by Arabidopsis thaliana in South-western Europe differ from those in North-eastern Europe. This pattern correlates directly with a shift in the composition of the aphid communities. In the second step, the researchers studied experimentally whether different aphid species could directly select for these different chemical compounds under controlled conditions. To this end, they exposed mixed populations of Arabidopsis thaliana to the cabbage and mustard aphid populations typical of North-eastern or South-western Europe. After five plant generations, continuous feeding by the different aphid species led to the selection of different chemical profiles, and these were consistent with the patterns seen in nature. “There is natural variation in chemical defenses which is under genetic control”, explains Züst “and this variation is maintained by geographic variation in the composition of aphid communities”. “Genetic variation is the raw material for evolution”, he continues, “so the maintenance of genetic diversity is essential if populations are to respond to future environmental changes such as climate change or environmental degradation”.
The costs of defense
In the control populations with no aphid feeding, some of the successful genotypes from aphid populations were lost. According to Turnbull, this occurred because defense mechanisms are costly for the plant and often come at the expense of growth: “Genetic diversity was only maintained across the different treatments; within each treatment much of the diversity was lost. In the control populations, this meant the loss of defended genotypes, as here investment in costly defenses brings no benefit to the plant”. Today, the genetic diversity of many plant species is being eroded. For example, agricultural plants are selected for rapid growth and maximum yield at the expense of natural defenses, making the use of pesticides inevitable. In future, the new findings could be used to develop customized seeds that are more resistant to specific local pest communities, thus limiting the use of pesticides.
Further reading:
Tobias Züst, Christian Heichinger, Ueli Grossniklaus, Richard Harrington, Daniel J. Kliebenstein, Lindsay Turnbull. Natural enemies drive geographic variation in plant defenses. Science. October 5, 2012, doi: 10.1126/science.1226397.
Contact:
Dr Tobias Züst
Department of Ecology and Evolutionary Biology
Cornell University
Phone +1 607 319 99 05
e-mail: tobias.zuest@cornell.edu
Dr. Lindsay Turnbull
Institute of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone +41 44 635 61 20
e-mail: lindsay.turnbull@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>