Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants adapt their defenses to the local pest community

05.10.2012
Populations of the same plant species produce specific defenses that are effective against the predominant local pest community.
Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Populations of the same plant species produce specific defenses that are effective against the predominant local pest community. Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Test set-up of the selection experiment. Different genotypes of Arabidopsis thaliana were exposed to different aphids in parallel. Each individual Plexiglas box simulates a plant population with a particular composition of aphids.

UZH


Detailed view of the selection experiment. Plant populations are harmed to varying degrees by the different aphid species. From left to right: Population without aphids, mustard aphid, cabbage aphid, aphid mixture, mustard aphid, peach aphid.

Herbivorous insects, such as aphids, damage plants and can substantially reduce yields in agricultural settings; however, they can play a major role in maintaining genetic diversity. Ecologists Tobias Züst and Lindsay Turnbull from the University of Zurich together with colleagues from California and Great Britain demonstrated the importance of variation in herbivore communities using the model plant, Arabidopsis thaliana, also known as wall cress. According to Züst, the work is one of the first experimental confirmations of a forty-year-old theory that herbivorous insects exert strong selective pressure on their host plants. Moreover, plants were quick to abandon defense mechanisms when pests were absent, confirming the high costs of these defenses.

Like many other plants, Arabidopsis thaliana, or wall cress, defends itself against pests with a sophisticated chemical arsenal. The pests, however, continually evolve mechanisms to tolerate or metabolize particular chemical components. This means that depending on the abundance of different pest species, different compounds will provide optimal protection, and thus the plant needs to produce a carefully tailored cocktail that will be effective against the most likely attackers. The researchers’ first step was to study the distribution of different chemical defenses in natural populations of Arabidopsis thaliana across Europe and compare it to the geographic distribution of two important pest species: the cabbage and the mustard aphid.

Local pest populations as an evolutionary force
The scientists demonstrate that the main chemical compounds produced by Arabidopsis thaliana in South-western Europe differ from those in North-eastern Europe. This pattern correlates directly with a shift in the composition of the aphid communities. In the second step, the researchers studied experimentally whether different aphid species could directly select for these different chemical compounds under controlled conditions. To this end, they exposed mixed populations of Arabidopsis thaliana to the cabbage and mustard aphid populations typical of North-eastern or South-western Europe. After five plant generations, continuous feeding by the different aphid species led to the selection of different chemical profiles, and these were consistent with the patterns seen in nature. “There is natural variation in chemical defenses which is under genetic control”, explains Züst “and this variation is maintained by geographic variation in the composition of aphid communities”. “Genetic variation is the raw material for evolution”, he continues, “so the maintenance of genetic diversity is essential if populations are to respond to future environmental changes such as climate change or environmental degradation”.
The costs of defense
In the control populations with no aphid feeding, some of the successful genotypes from aphid populations were lost. According to Turnbull, this occurred because defense mechanisms are costly for the plant and often come at the expense of growth: “Genetic diversity was only maintained across the different treatments; within each treatment much of the diversity was lost. In the control populations, this meant the loss of defended genotypes, as here investment in costly defenses brings no benefit to the plant”. Today, the genetic diversity of many plant species is being eroded. For example, agricultural plants are selected for rapid growth and maximum yield at the expense of natural defenses, making the use of pesticides inevitable. In future, the new findings could be used to develop customized seeds that are more resistant to specific local pest communities, thus limiting the use of pesticides.
Further reading:
Tobias Züst, Christian Heichinger, Ueli Grossniklaus, Richard Harrington, Daniel J. Kliebenstein, Lindsay Turnbull. Natural enemies drive geographic variation in plant defenses. Science. October 5, 2012, doi: 10.1126/science.1226397.
Contact:
Dr Tobias Züst
Department of Ecology and Evolutionary Biology
Cornell University
Phone +1 607 319 99 05
e-mail: tobias.zuest@cornell.edu
Dr. Lindsay Turnbull
Institute of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone +41 44 635 61 20
e-mail: lindsay.turnbull@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>