Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants adapt their defenses to the local pest community

05.10.2012
Populations of the same plant species produce specific defenses that are effective against the predominant local pest community.
Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Populations of the same plant species produce specific defenses that are effective against the predominant local pest community. Variation in the local pest community can therefore maintain genetic variation in plants across large geographical scales. Ecologists from the University of Zurich used controlled experiments coupled with observations on natural plant populations and their pests to demonstrate how genetic variation in plant defenses is maintained. The results could be used to develop customized seeds that are more resistant to the local pest community.

Test set-up of the selection experiment. Different genotypes of Arabidopsis thaliana were exposed to different aphids in parallel. Each individual Plexiglas box simulates a plant population with a particular composition of aphids.

UZH


Detailed view of the selection experiment. Plant populations are harmed to varying degrees by the different aphid species. From left to right: Population without aphids, mustard aphid, cabbage aphid, aphid mixture, mustard aphid, peach aphid.

Herbivorous insects, such as aphids, damage plants and can substantially reduce yields in agricultural settings; however, they can play a major role in maintaining genetic diversity. Ecologists Tobias Züst and Lindsay Turnbull from the University of Zurich together with colleagues from California and Great Britain demonstrated the importance of variation in herbivore communities using the model plant, Arabidopsis thaliana, also known as wall cress. According to Züst, the work is one of the first experimental confirmations of a forty-year-old theory that herbivorous insects exert strong selective pressure on their host plants. Moreover, plants were quick to abandon defense mechanisms when pests were absent, confirming the high costs of these defenses.

Like many other plants, Arabidopsis thaliana, or wall cress, defends itself against pests with a sophisticated chemical arsenal. The pests, however, continually evolve mechanisms to tolerate or metabolize particular chemical components. This means that depending on the abundance of different pest species, different compounds will provide optimal protection, and thus the plant needs to produce a carefully tailored cocktail that will be effective against the most likely attackers. The researchers’ first step was to study the distribution of different chemical defenses in natural populations of Arabidopsis thaliana across Europe and compare it to the geographic distribution of two important pest species: the cabbage and the mustard aphid.

Local pest populations as an evolutionary force
The scientists demonstrate that the main chemical compounds produced by Arabidopsis thaliana in South-western Europe differ from those in North-eastern Europe. This pattern correlates directly with a shift in the composition of the aphid communities. In the second step, the researchers studied experimentally whether different aphid species could directly select for these different chemical compounds under controlled conditions. To this end, they exposed mixed populations of Arabidopsis thaliana to the cabbage and mustard aphid populations typical of North-eastern or South-western Europe. After five plant generations, continuous feeding by the different aphid species led to the selection of different chemical profiles, and these were consistent with the patterns seen in nature. “There is natural variation in chemical defenses which is under genetic control”, explains Züst “and this variation is maintained by geographic variation in the composition of aphid communities”. “Genetic variation is the raw material for evolution”, he continues, “so the maintenance of genetic diversity is essential if populations are to respond to future environmental changes such as climate change or environmental degradation”.
The costs of defense
In the control populations with no aphid feeding, some of the successful genotypes from aphid populations were lost. According to Turnbull, this occurred because defense mechanisms are costly for the plant and often come at the expense of growth: “Genetic diversity was only maintained across the different treatments; within each treatment much of the diversity was lost. In the control populations, this meant the loss of defended genotypes, as here investment in costly defenses brings no benefit to the plant”. Today, the genetic diversity of many plant species is being eroded. For example, agricultural plants are selected for rapid growth and maximum yield at the expense of natural defenses, making the use of pesticides inevitable. In future, the new findings could be used to develop customized seeds that are more resistant to specific local pest communities, thus limiting the use of pesticides.
Further reading:
Tobias Züst, Christian Heichinger, Ueli Grossniklaus, Richard Harrington, Daniel J. Kliebenstein, Lindsay Turnbull. Natural enemies drive geographic variation in plant defenses. Science. October 5, 2012, doi: 10.1126/science.1226397.
Contact:
Dr Tobias Züst
Department of Ecology and Evolutionary Biology
Cornell University
Phone +1 607 319 99 05
e-mail: tobias.zuest@cornell.edu
Dr. Lindsay Turnbull
Institute of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone +41 44 635 61 20
e-mail: lindsay.turnbull@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>