Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant stem cells could be fruitful source of low-cost cancer drug

26.10.2010
A popular cancer drug could be produced cheaply and sustainably using stem cells derived from trees, a study suggests.

Researchers have isolated and grown stem cells from a yew tree whose bark is a natural source of the anticancer compound paclitaxel. The development could enable the compound to be produced on a commercial scale at low cost, with no harmful by-products.

Scientists and engineers behind the development say the drug treatment – currently used on lung, ovarian, breast, head and neck cancer – could become cheaper and more widely available. The study was carried out by the University of Edinburgh and the Unhwa Biotech company in Korea.

Currently, an extract from yew tree bark is used to industrially manufacture the compound paclitaxel. However, this process is expensive, requires supplies of mature trees, and creates environmentally damaging by-products.

Researchers claim that using stem cells – self-renewing tree cells which can be manipulated to produce large amounts of the active compound – would effectively create an abundant supply of the drug. The process would cost far less than conventional methods.

Scientists behind the project have also cultured stem cells from other plants with medical applications, indicating that the technique could be used to manufacture other important pharmaceuticals besides paclitaxel.

The study was published in Nature Biotechnology and supported by the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Professor Gary Loake, of the University of Edinburgh's School of Biological Sciences, who led/took part in the study, said: "Plants are a rich source of medicine – around one in four drugs in use today is derived from plants. Our findings could deliver a low-cost, clean and safe way to harness the healing power of plants, potentially helping to treat cancer, and other conditions."

Catriona Kelly | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: Biological Science Biotechnology Science TV stem cells

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>