Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists find mechanism that gives plants ‘balance’

24.04.2012
When a plant goes into defense mode in order to protect itself against harsh weather or disease, that’s good for the plant, but bad for the farmer growing the plant. Bad because when a plant acts to defend itself, it turns off its growth mechanism.
But now researchers at Michigan State University, as part of an international collaboration, have figured out how plants can make the “decision” between growth and defense, a finding that could help them strike a balance – keep safe from harm while continuing to grow.

Writing in the current issue of the Proceedings of the National Academy of Sciences, Sheng Yang He, an MSU professor of plant biology, and his team found that the two hormones that control growth (called gibberellins) and defense (known as jasmonates) literally come together in a crisis and figure out what to do.

“What we’ve discovered is that some key components of growth and defense programs physically interact with each other,” he said. “Communication between the two is how plants coordinate the two different situations.

We now know where one of the elusive molecular links is between growth and defense.”

This is important because now that scientists know that this happens, they can work to figure out how to “uncouple” the two, He added.

“Perhaps at some point we can genetically or chemically engineer the plants so they don’t talk to each other that much,” He said. “This way we may be able to increase yield and defense at the same time.”

In this way, He said plants are a lot like humans. We only have a certain amount of energy to use, and we have to make wise choices on how to use it.

“Plants, like people, have to learn to prioritize,” he said. “You can use your energy for growth, or use it for defense, but you can’t do them both at maximum level at the same time.”

The work was done on two different plants: rice, a narrow-leafed plant, and Arabidopsis, which has a broader leaf. This was significant because it demonstrated that this phenomenon occurs in a variety of plants.

He was one of the lead investigators on an international team of scientists that studied the issue. Other participating institutions included the Shanghai Institutes for Biological Sciences, Hunan Agricultural University, the University of Arkansas, Duke University, Yale University and Penn State University.

Funding was provided by the National Institutes of Health, the U.S. Department of Energy and the Howard Hughes Medical Institute.

He is a Howard Hughes Medical Institute/Gordon and Betty Moore Foundation Investigator. Earning the prestige honor last year, He is one of only 15 in the country.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>