Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientist discovers basis of evolution in violins

09.10.2014

Studies of plant leaf shape relevant to musical instruments

What could the natural diversity and beauty of plant leaves have in common with one of mankind’s greatest creative inventions, the violin? Much more than you might imagine.

“There are many parallels between leaves and violins,” says Dan Chitwood, Ph.D., assistant member, Donald Danforth Plant Science Center in St. Louis, Missouri.

“Both have beautiful shapes that are potentially functional, change over time, or result from mimicry. Shape is information that can tell us a story. Just as evolutionary changes in leaf shape inform us about mechanisms that ultimately determine plant morphology, the analysis of cultural innovations, such as violins, gives us a glimpse into the historical forces shaping our lives and creativity.”

As a plant biologist, Chitwood spends most of his time exploring genetic and molecular mechanisms underlying diversity in plant morphology, or in layman’s terms, understanding how leaf shapes are formed and what that means for a plant to grow and thrive. He also studies how leaf shapes change as plant species evolve to adapt in different environments. Research into why a desert-adapted tomato species can survive with little water, for example, sheds light on how leaf architecture affects the efficiency of plant water use.

Chitwood’s research involves the tools of “morphometrics”, which can be used to quantify traits of evolutionary significance. Changes in shape over time provide insight into an object’s function or evolutionary relationships. A major objective of morphometrics is to statistically test hypotheses about the factors that affect shape.

But his love of music, and his talent playing the viola, led Chitwood to ask how musical instruments, particularly those designed by masters, evolved over time. Could shapes of violins tell us something about the function of the instrument, or about which violin makers (luthiers) borrowed ideas from others? Could the factors influencing violin evolution be analyzed and understood using the same morphometric approaches used to understand evolution of natural species?

Violin shapes have been in flux since the design and production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality.

Chitwood compiled data on the body shapes of more than 9,000 violins from over 400 years of design history using iconography data from auction houses. The dataset encompasses the most highly desirable violins, and those of historical importance, including violins designed by Giovanni Paolo Maggini, Giuseppe Guarneri del Gesù, and Antonio Stradivari, as well as Stradivari copyists Nicolas Lupot, Vincenzo Panormo, and Jean-Baptiste Vuillaume.

The results of Chitwood’s research werepublished in the article, “Imitation, genetic lineages, and time influenced the morphological evolution of the violin,” in the October 8th edition of the journal, PLOS ONE.

Chitwood found that specific shape attributes differentiate the instruments, and these details strongly correlate with historical time. His linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering images of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments.

As it turns out, genetics also played a role in violin making.  Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness.

As with all scientific papers, Chitwood’s article was rigorously peer-reviewed, in this case, by some of the world’s leading morphometrics experts. The critiques prior to publication led to improvements in the morphometric techniques used in the final analyses. Chitwood is now applying his improved methods to his plant research program at the Donald Danforth Plant Science Center.

“This is a fantastic example of how advances in one field can help advance a seemingly unrelated field,” said Chitwood. “I’ll be a happy scientist and musician if by understanding violin evolution this helps lead to improved crop plants that are more productive and sustainable.”

###

For additional information, contact:
Karla Roeber, (314) 587-1231
Kroeber@danforthcenter.org
Melanie Bernds, (314) 587-1647
mbernds@danforthcenter.org

Melanie Bernds | Eurek Alert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>