Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientist discovers basis of evolution in violins

09.10.2014

Studies of plant leaf shape relevant to musical instruments

What could the natural diversity and beauty of plant leaves have in common with one of mankind’s greatest creative inventions, the violin? Much more than you might imagine.

“There are many parallels between leaves and violins,” says Dan Chitwood, Ph.D., assistant member, Donald Danforth Plant Science Center in St. Louis, Missouri.

“Both have beautiful shapes that are potentially functional, change over time, or result from mimicry. Shape is information that can tell us a story. Just as evolutionary changes in leaf shape inform us about mechanisms that ultimately determine plant morphology, the analysis of cultural innovations, such as violins, gives us a glimpse into the historical forces shaping our lives and creativity.”

As a plant biologist, Chitwood spends most of his time exploring genetic and molecular mechanisms underlying diversity in plant morphology, or in layman’s terms, understanding how leaf shapes are formed and what that means for a plant to grow and thrive. He also studies how leaf shapes change as plant species evolve to adapt in different environments. Research into why a desert-adapted tomato species can survive with little water, for example, sheds light on how leaf architecture affects the efficiency of plant water use.

Chitwood’s research involves the tools of “morphometrics”, which can be used to quantify traits of evolutionary significance. Changes in shape over time provide insight into an object’s function or evolutionary relationships. A major objective of morphometrics is to statistically test hypotheses about the factors that affect shape.

But his love of music, and his talent playing the viola, led Chitwood to ask how musical instruments, particularly those designed by masters, evolved over time. Could shapes of violins tell us something about the function of the instrument, or about which violin makers (luthiers) borrowed ideas from others? Could the factors influencing violin evolution be analyzed and understood using the same morphometric approaches used to understand evolution of natural species?

Violin shapes have been in flux since the design and production of the first instruments in 16th century Italy. Numerous innovations have improved the acoustical properties and playability of violins. Although the coarse shape of violins is integral to their design, details of the body outline can vary without significantly compromising sound quality.

Chitwood compiled data on the body shapes of more than 9,000 violins from over 400 years of design history using iconography data from auction houses. The dataset encompasses the most highly desirable violins, and those of historical importance, including violins designed by Giovanni Paolo Maggini, Giuseppe Guarneri del Gesù, and Antonio Stradivari, as well as Stradivari copyists Nicolas Lupot, Vincenzo Panormo, and Jean-Baptiste Vuillaume.

The results of Chitwood’s research werepublished in the article, “Imitation, genetic lineages, and time influenced the morphological evolution of the violin,” in the October 8th edition of the journal, PLOS ONE.

Chitwood found that specific shape attributes differentiate the instruments, and these details strongly correlate with historical time. His linear discriminant analysis reveals luthiers who likely copied the outlines of their instruments from others, which historical accounts corroborate. Clustering images of averaged violin shapes places luthiers into four major groups, demonstrating a handful of discrete shapes predominate in most instruments.

As it turns out, genetics also played a role in violin making.  Violin shapes originating from multi-generational luthier families tend to cluster together, and familial origin is a significant explanatory factor of violin shape. Together, the analysis of four centuries of violin shapes demonstrates not only the influence of history and time leading to the modern violin, but widespread imitation and the transmission of design by human relatedness.

As with all scientific papers, Chitwood’s article was rigorously peer-reviewed, in this case, by some of the world’s leading morphometrics experts. The critiques prior to publication led to improvements in the morphometric techniques used in the final analyses. Chitwood is now applying his improved methods to his plant research program at the Donald Danforth Plant Science Center.

“This is a fantastic example of how advances in one field can help advance a seemingly unrelated field,” said Chitwood. “I’ll be a happy scientist and musician if by understanding violin evolution this helps lead to improved crop plants that are more productive and sustainable.”

###

For additional information, contact:
Karla Roeber, (314) 587-1231
Kroeber@danforthcenter.org
Melanie Bernds, (314) 587-1647
mbernds@danforthcenter.org

Melanie Bernds | Eurek Alert!

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>