Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant’s embryonic development: Maternal and paternal cooperation

09.05.2017

Researchers disprove the assumption that parents conflict with one another during a plant’s embryonic development

The Arabidopsis thaliana is a tiny, inconspicuous and herbaceous offshoot of the family of cruciferous plant that one might easily overlook in a meadow, yet the plant has the potential to disrupt a common school of thought:


Caption: Arabidopsis thaliana. Photo: Thomas Kunz

Together with his working group and colleagues from the University of Nagoya, Japan, the Freiburg biologist Prof. Dr. Thomas Laux show how plants start embryo development and thereby follow a fundamentally different reproduction strategy than animals.

The team used the Arabidopsis thaliana as a model organism and showed how plants begin with gene transcription, that is genome reading, just hours after fertilization. That includes the genes that regulate the first steps in embryonic development. The researchers describe the newly found mechanism in the scientific journal „Genes and Development“.

From a biological standpoint, life begins after fertilization: The organism has a gene expression program that regulates embryonic development from a single zygote -- that is, from the fusion of an egg cell and a sperm. In mammals, this new start occurs almost without any transcription in the zygote and rather uses gene transcripts and proteins that have been stored by the mother in the egg cell.

Plants, however, have chosen a different strategy to ensure the transcription of the correct genes in the zygote: an intracellular signal pathway, activated by the sperm, adds phosphate residues to the transcription factor WRKY2 and ensures communication between the cell membrane and nucleus.

As a consequence, this protein is enabled to activate the transcription of a master regulator, named WOX8, which controls the first steps of embryogenesis. In the case of the Arabidopsis thaliana, it includes, for instance, the formation of the shoot-root axis and the cell divisions that give rise to plant growth.

Nonetheless, WRKY2 alone cannot completely regulate the WOX8 transcription. It requires the help of additional transcription factors stemming from the maternal genes called HDG11 and HDG12. Only the combination of the sperm-activated WRKY2 and the maternally provided HDG proteins guarantees that the embryo regulation begins in the zygote. One obvious advantage of this collaboration is that the embryogenesis program is only activated when the egg cell and sperm fuse.

The study stands in contrast to the long-standing so-called „parental conflict theory“ that has been proposed for plants and mammals: This theory holds that for embryonic nourishment the two parents act antagonistically. Whereas paternal gene copies favor nutrient supply to only their own offspring, the maternal gene copies tend to favor the distribution of resources among all offspring. The findings of the research group suggest that one must assume a new model for the initiation of embryonic development of plants that relies on both parents’ cooperation.

Original publication:
Ueda, M., Aichinger, E., Gong, W., Groot, E., Verstraeten, I., Dai Vu, L., De Smet, I., Higashiyama, T., Umeda, M. and Laux, T. (2017). Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes and Development 31, S. 617-662.

Thomas Laux’s research at the University of Freiburg

www.biologie.uni-freiburg.de/LauxLab/welcome.htm 

Contact:
Prof. Dr. Thomas Laux
Institute of Biology III
University of Freiburg
Tel.: 0761/203-2943
E-Mail: laux@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/mutter-und-vater-arbeiten-zusammen

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>