Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pest reprogramme the roots

29.09.2015

Microscopic roundworms (nematodes) live like maggots in bacon: They penetrate into the roots of beets, potatoes or soybeans and feed on plant cells, which are full of energy. But how they do it precisely was previously unknown. Scientists at the University of Bonn together with an international team discovered that nematodes produce a plant hormone to stimulate the growth of specific feeding cells in the roots. These cells provide the parasite with all that it needs. The results are now published in the journal "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).

The beet cyst nematode (Heterodera schachtii) is a pipsqueak of less than a millimetre in length, but it causes huge yield losses in sugar beet. Not only are infected beets smaller than normal, but also they have an increasing number of lateral roots and experience a drastic decrease in sugar yield.


The beet cyst nematode (Heterodera schachtii) sucks at a plant root. The pest reprogrammes the root with a plant hormone.

(c) Photo: Zoran Radakovic

This makes the pest a talking point as a cause of the dreaded “beet fatigue”, especially in traditional sugar beet growing such as Bonn. To date, however, it was not clear how the nematodes stimulate the development of a nurse cell system inside the root, which they absolutely need as a food source.

It arises from the fact that cells divide increasingly, merge with each other and eventually swell. "For a long time it was speculated that plant hormones play a role in the formation of a nurse cell system in roots," says Prof. Dr. Florian Grundler from the Molecular Phytomedicine, University of Bonn. Since the nematodes lose their ability to move after penetrating into the roots, they are particularly dependent on the development of tumorous nurse cell system.

Pest uses degradation products of its metabolism

Together with scientists from Columbia (USA), Olomouc (Czech Republic), Warsaw (Poland), Osaka (Japan) and the Freie Universitaet Berlin, the researchers at the University of Bonn have used Arabidopsis thaliana as a model plant to discover that the beet cyst nematode itself produces the plant hormone cytokinin.

“The nematode has been able to employ a breakdown product of its own metabolism as a plant hormone to control the development of plant cells,” said lead author and research group leader Dr Shahid Siddique. The pest programmed the plant roots in beets to form a special nutritive tissue, which the nematode uses for its own growth.

The research team initially did not know whether the pest uses the hormone plants produce or whether it produces and releases the hormone itself. The scientists blocked cytokinin production in the plant - the nematode nevertheless continued to grow because it was not dependent on the plant-produced hormone.

Only when the agricultural experts blocked a special receptor at the docks to override the worm-produced hormone did they starve the pest, discovering that the hormone is important for the formation of the nurse cell system. “In this case, Heterodera schachtii cannot use its ability to produce cytokinin anymore, because a vital pathway was interrupted in the root cells,” explained Dr Siddique.

New options for plant breeding

Although this discovery is a result of basic research, it opens up new avenues in plant breeding. “On the one hand the result is an important contribution to the fundamental understanding of parasitism in plants, and on the other hand it can help to reduce the problem of cyst nematode in important agricultural crops,” said Prof Grundler. Now that an important mechanism had been found by the research, we are looking for an appropriate strategy to use these results specifically in resistance breeding.

Publication: A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants, Proceedings of the National Academy of Sciences (PNAS), DOI: 10.1073/pnas.1503657112

Contact for the media:

Prof. Dr. Florian Grundler
Molekulare Phytomedizin
Universität Bonn
Tel. ++49-(0)228-731675
E-mail: grundler@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>