Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pest reprogramme the roots

29.09.2015

Microscopic roundworms (nematodes) live like maggots in bacon: They penetrate into the roots of beets, potatoes or soybeans and feed on plant cells, which are full of energy. But how they do it precisely was previously unknown. Scientists at the University of Bonn together with an international team discovered that nematodes produce a plant hormone to stimulate the growth of specific feeding cells in the roots. These cells provide the parasite with all that it needs. The results are now published in the journal "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).

The beet cyst nematode (Heterodera schachtii) is a pipsqueak of less than a millimetre in length, but it causes huge yield losses in sugar beet. Not only are infected beets smaller than normal, but also they have an increasing number of lateral roots and experience a drastic decrease in sugar yield.


The beet cyst nematode (Heterodera schachtii) sucks at a plant root. The pest reprogrammes the root with a plant hormone.

(c) Photo: Zoran Radakovic

This makes the pest a talking point as a cause of the dreaded “beet fatigue”, especially in traditional sugar beet growing such as Bonn. To date, however, it was not clear how the nematodes stimulate the development of a nurse cell system inside the root, which they absolutely need as a food source.

It arises from the fact that cells divide increasingly, merge with each other and eventually swell. "For a long time it was speculated that plant hormones play a role in the formation of a nurse cell system in roots," says Prof. Dr. Florian Grundler from the Molecular Phytomedicine, University of Bonn. Since the nematodes lose their ability to move after penetrating into the roots, they are particularly dependent on the development of tumorous nurse cell system.

Pest uses degradation products of its metabolism

Together with scientists from Columbia (USA), Olomouc (Czech Republic), Warsaw (Poland), Osaka (Japan) and the Freie Universitaet Berlin, the researchers at the University of Bonn have used Arabidopsis thaliana as a model plant to discover that the beet cyst nematode itself produces the plant hormone cytokinin.

“The nematode has been able to employ a breakdown product of its own metabolism as a plant hormone to control the development of plant cells,” said lead author and research group leader Dr Shahid Siddique. The pest programmed the plant roots in beets to form a special nutritive tissue, which the nematode uses for its own growth.

The research team initially did not know whether the pest uses the hormone plants produce or whether it produces and releases the hormone itself. The scientists blocked cytokinin production in the plant - the nematode nevertheless continued to grow because it was not dependent on the plant-produced hormone.

Only when the agricultural experts blocked a special receptor at the docks to override the worm-produced hormone did they starve the pest, discovering that the hormone is important for the formation of the nurse cell system. “In this case, Heterodera schachtii cannot use its ability to produce cytokinin anymore, because a vital pathway was interrupted in the root cells,” explained Dr Siddique.

New options for plant breeding

Although this discovery is a result of basic research, it opens up new avenues in plant breeding. “On the one hand the result is an important contribution to the fundamental understanding of parasitism in plants, and on the other hand it can help to reduce the problem of cyst nematode in important agricultural crops,” said Prof Grundler. Now that an important mechanism had been found by the research, we are looking for an appropriate strategy to use these results specifically in resistance breeding.

Publication: A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants, Proceedings of the National Academy of Sciences (PNAS), DOI: 10.1073/pnas.1503657112

Contact for the media:

Prof. Dr. Florian Grundler
Molekulare Phytomedizin
Universität Bonn
Tel. ++49-(0)228-731675
E-mail: grundler@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>