Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pest reprogramme the roots

29.09.2015

Microscopic roundworms (nematodes) live like maggots in bacon: They penetrate into the roots of beets, potatoes or soybeans and feed on plant cells, which are full of energy. But how they do it precisely was previously unknown. Scientists at the University of Bonn together with an international team discovered that nematodes produce a plant hormone to stimulate the growth of specific feeding cells in the roots. These cells provide the parasite with all that it needs. The results are now published in the journal "Proceedings of the National Academy of Sciences of the United States of America" (PNAS).

The beet cyst nematode (Heterodera schachtii) is a pipsqueak of less than a millimetre in length, but it causes huge yield losses in sugar beet. Not only are infected beets smaller than normal, but also they have an increasing number of lateral roots and experience a drastic decrease in sugar yield.


The beet cyst nematode (Heterodera schachtii) sucks at a plant root. The pest reprogrammes the root with a plant hormone.

(c) Photo: Zoran Radakovic

This makes the pest a talking point as a cause of the dreaded “beet fatigue”, especially in traditional sugar beet growing such as Bonn. To date, however, it was not clear how the nematodes stimulate the development of a nurse cell system inside the root, which they absolutely need as a food source.

It arises from the fact that cells divide increasingly, merge with each other and eventually swell. "For a long time it was speculated that plant hormones play a role in the formation of a nurse cell system in roots," says Prof. Dr. Florian Grundler from the Molecular Phytomedicine, University of Bonn. Since the nematodes lose their ability to move after penetrating into the roots, they are particularly dependent on the development of tumorous nurse cell system.

Pest uses degradation products of its metabolism

Together with scientists from Columbia (USA), Olomouc (Czech Republic), Warsaw (Poland), Osaka (Japan) and the Freie Universitaet Berlin, the researchers at the University of Bonn have used Arabidopsis thaliana as a model plant to discover that the beet cyst nematode itself produces the plant hormone cytokinin.

“The nematode has been able to employ a breakdown product of its own metabolism as a plant hormone to control the development of plant cells,” said lead author and research group leader Dr Shahid Siddique. The pest programmed the plant roots in beets to form a special nutritive tissue, which the nematode uses for its own growth.

The research team initially did not know whether the pest uses the hormone plants produce or whether it produces and releases the hormone itself. The scientists blocked cytokinin production in the plant - the nematode nevertheless continued to grow because it was not dependent on the plant-produced hormone.

Only when the agricultural experts blocked a special receptor at the docks to override the worm-produced hormone did they starve the pest, discovering that the hormone is important for the formation of the nurse cell system. “In this case, Heterodera schachtii cannot use its ability to produce cytokinin anymore, because a vital pathway was interrupted in the root cells,” explained Dr Siddique.

New options for plant breeding

Although this discovery is a result of basic research, it opens up new avenues in plant breeding. “On the one hand the result is an important contribution to the fundamental understanding of parasitism in plants, and on the other hand it can help to reduce the problem of cyst nematode in important agricultural crops,” said Prof Grundler. Now that an important mechanism had been found by the research, we are looking for an appropriate strategy to use these results specifically in resistance breeding.

Publication: A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants, Proceedings of the National Academy of Sciences (PNAS), DOI: 10.1073/pnas.1503657112

Contact for the media:

Prof. Dr. Florian Grundler
Molekulare Phytomedizin
Universität Bonn
Tel. ++49-(0)228-731675
E-mail: grundler@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>