Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pathogen genetically tailors attacks to each part of host

15.04.2010
A tumor-causing maize fungus with the unsavory-sounding name "corn smut" wields different weapons from its genetic arsenal depending on which part of the plant it infects. The discovery by Stanford researchers marks the first time tissue-specific targeting has been found in a pathogen.

The finding upends conventional notions of how pathogens attack and could point the way to new approaches to fighting disease not only in plants but also in people, according to Stanford researchers. Corn smut is a plant cancer.

"This establishes a new principle in plant pathology, that a pathogen can tailor its attack to specifically exploit the tissue or organ properties where it is growing," said Virginia Walbot, professor of biology and senior author of a paper published in Science detailing the study. A summary of the study will be published in the May issue of Nature Cancer Reviews as a Research Highlight.

"It would be as if a pathogen of a human could recognize whether it is in muscle or kidney or skin, and activate different genes to exploit the host more effectively," she said.

Up until now, pathologists had always assumed that when a pathogen went on the attack, it used every weapon it had, no matter which part of an organism it was infecting. But Walbot's team found that only about 30 percent of the genes in the corn smut genome are always activated, or "expressed," regardless of whether it is in seedlings, adult leaves or the tassel.

The other 70 percent of the genome is what the fungus would pick and choose from, depending on the tissue it was infecting. Some of those genes were expressed in only one of the three organs the researchers studied; the others were activated in two of the three.

"This is a revolutionary finding," Walbot said.

Her team also discovered that different parts of the maize plant activated different genes in response to being attacked.

"We hope that other people working on pathogens of all types will go back now and ask, 'when the pathogen is found in different parts of the body, is it actually using different weapons?'" Walbot said. "We think this discovery will stimulate many new experiments with existing pathogens."

Pathologists generally collect their samples from the same, characteristic place on the organism they are studying. For a plant, that is typically the leaves or fruit, while in an animal, it is usually a spot where the pathogen of interest is clearly flourishing. But as a result, Walbot said, when researchers happen to find the pathogen in another place in the organism, they generally don't test whether the pathogen is doing different things.

"It may be just the specialization of modern pathology which has resulted in the 'whole organism' context being overlooked," she said.

Walbot hopes that her team's work on corn smut will also inspire new experiments on human disease such as cancer.

"Medicine has made the same assumption that pathogens use all of their weapons wherever they are attacking a human," Walbot said.

But it may be that human pathogens are also situationally selective, genetically modulating the nature of their attack to whatever part of the body they are infecting.

"If that is the case, then we could develop drugs that are specific for the particular organ or tissue where the pathogen is found," Walbot said. "I think that holds great promise for reducing the damage done to the patient in the course of drug treatment."

Walbot got interested in researching the possibility that pathogens might vary their attack while doing fieldwork on a different project for which she was evaluating some mutant strains of maize. She noticed that certain kinds of mutants were resistant to corn smut.

Through a series of experiments with different maize mutants, she determined that the key factor in determining whether – or how intensely – corn smut infected a given part of a plant was the potential for growth of that particular type of tissue. Greater potential for continued growth correlated with more intense infections of corn smut and bigger, more plentiful tumors.

The key aspect was the potential – if a mutant grew only small leaves and then quickly stopped growing, the corn smut wasn't interested, even if there was sufficient area to host some tumors.

Walbot tested how various mutant strains of corn smut behaved when infecting normal maize plants. She discovered that a strain that was highly effective in causing tumors in, say, the tassels might be completely ineffective in triggering tumors in a seedling. That told her that different genes in the fungus were involved depending on which part of the maize the fungus was attacking.

"We found genetic evidence from both the pathogen and the host that depending on the growth potential, in an organ-specific way, of both the pathogen and the host, you could modulate the number of tumors," Walbot said.

The team then set to work with DNA microarrays, lab tools that can screen thousands of genes at a time and determine which ones are active and which are not. The microarray work confirmed and quantified the results of their earlier experiments – corn smut was indeed situationally selective, to a high degree. Less than a third of its genes were consistently activated regardless of which organ of the maize plant it was infecting.

"We had proof from the microarray that paralleled the genetic proof; that is, that there is organ-specific expression by maize in response to corn smut, and corn smut expresses a specific suite of genes depending on where it is in the plant," Walbot said.

Corn smut, though a common pathogen, does not devastate maize crops and so relatively little work had been done by plant pathology researchers to study it. In Mexico, the fungus is called "huitlacoche," and the tumors, which are used in cooking, are sometimes purposely grown on ears of corn.

"If you order a mushroom omelet in Mexico, the fungus that you are eating is Ustilago maydis, or corn smut," Walbot said.

Though the new findings may not have much impact on those who savor corn smut for its culinary delights, Walbot said researchers are likely to take note.

"That is just a prediction," she said, "but I think pathologists will be quick to pounce on this."

Coauthors of the paper include David Skibbe, a postdoctoral fellow in biology, and John Fernandes, a bioinformaticist and research assistant in biology, both at Stanford. Coauthor Gunther Doehlemann is a research group leader in terrestrial microbiology at the Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>