Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pathogen genetically tailors attacks to each part of host

15.04.2010
A tumor-causing maize fungus with the unsavory-sounding name "corn smut" wields different weapons from its genetic arsenal depending on which part of the plant it infects. The discovery by Stanford researchers marks the first time tissue-specific targeting has been found in a pathogen.

The finding upends conventional notions of how pathogens attack and could point the way to new approaches to fighting disease not only in plants but also in people, according to Stanford researchers. Corn smut is a plant cancer.

"This establishes a new principle in plant pathology, that a pathogen can tailor its attack to specifically exploit the tissue or organ properties where it is growing," said Virginia Walbot, professor of biology and senior author of a paper published in Science detailing the study. A summary of the study will be published in the May issue of Nature Cancer Reviews as a Research Highlight.

"It would be as if a pathogen of a human could recognize whether it is in muscle or kidney or skin, and activate different genes to exploit the host more effectively," she said.

Up until now, pathologists had always assumed that when a pathogen went on the attack, it used every weapon it had, no matter which part of an organism it was infecting. But Walbot's team found that only about 30 percent of the genes in the corn smut genome are always activated, or "expressed," regardless of whether it is in seedlings, adult leaves or the tassel.

The other 70 percent of the genome is what the fungus would pick and choose from, depending on the tissue it was infecting. Some of those genes were expressed in only one of the three organs the researchers studied; the others were activated in two of the three.

"This is a revolutionary finding," Walbot said.

Her team also discovered that different parts of the maize plant activated different genes in response to being attacked.

"We hope that other people working on pathogens of all types will go back now and ask, 'when the pathogen is found in different parts of the body, is it actually using different weapons?'" Walbot said. "We think this discovery will stimulate many new experiments with existing pathogens."

Pathologists generally collect their samples from the same, characteristic place on the organism they are studying. For a plant, that is typically the leaves or fruit, while in an animal, it is usually a spot where the pathogen of interest is clearly flourishing. But as a result, Walbot said, when researchers happen to find the pathogen in another place in the organism, they generally don't test whether the pathogen is doing different things.

"It may be just the specialization of modern pathology which has resulted in the 'whole organism' context being overlooked," she said.

Walbot hopes that her team's work on corn smut will also inspire new experiments on human disease such as cancer.

"Medicine has made the same assumption that pathogens use all of their weapons wherever they are attacking a human," Walbot said.

But it may be that human pathogens are also situationally selective, genetically modulating the nature of their attack to whatever part of the body they are infecting.

"If that is the case, then we could develop drugs that are specific for the particular organ or tissue where the pathogen is found," Walbot said. "I think that holds great promise for reducing the damage done to the patient in the course of drug treatment."

Walbot got interested in researching the possibility that pathogens might vary their attack while doing fieldwork on a different project for which she was evaluating some mutant strains of maize. She noticed that certain kinds of mutants were resistant to corn smut.

Through a series of experiments with different maize mutants, she determined that the key factor in determining whether – or how intensely – corn smut infected a given part of a plant was the potential for growth of that particular type of tissue. Greater potential for continued growth correlated with more intense infections of corn smut and bigger, more plentiful tumors.

The key aspect was the potential – if a mutant grew only small leaves and then quickly stopped growing, the corn smut wasn't interested, even if there was sufficient area to host some tumors.

Walbot tested how various mutant strains of corn smut behaved when infecting normal maize plants. She discovered that a strain that was highly effective in causing tumors in, say, the tassels might be completely ineffective in triggering tumors in a seedling. That told her that different genes in the fungus were involved depending on which part of the maize the fungus was attacking.

"We found genetic evidence from both the pathogen and the host that depending on the growth potential, in an organ-specific way, of both the pathogen and the host, you could modulate the number of tumors," Walbot said.

The team then set to work with DNA microarrays, lab tools that can screen thousands of genes at a time and determine which ones are active and which are not. The microarray work confirmed and quantified the results of their earlier experiments – corn smut was indeed situationally selective, to a high degree. Less than a third of its genes were consistently activated regardless of which organ of the maize plant it was infecting.

"We had proof from the microarray that paralleled the genetic proof; that is, that there is organ-specific expression by maize in response to corn smut, and corn smut expresses a specific suite of genes depending on where it is in the plant," Walbot said.

Corn smut, though a common pathogen, does not devastate maize crops and so relatively little work had been done by plant pathology researchers to study it. In Mexico, the fungus is called "huitlacoche," and the tumors, which are used in cooking, are sometimes purposely grown on ears of corn.

"If you order a mushroom omelet in Mexico, the fungus that you are eating is Ustilago maydis, or corn smut," Walbot said.

Though the new findings may not have much impact on those who savor corn smut for its culinary delights, Walbot said researchers are likely to take note.

"That is just a prediction," she said, "but I think pathologists will be quick to pounce on this."

Coauthors of the paper include David Skibbe, a postdoctoral fellow in biology, and John Fernandes, a bioinformaticist and research assistant in biology, both at Stanford. Coauthor Gunther Doehlemann is a research group leader in terrestrial microbiology at the Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>