Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Nutrients from Wastewater

08.09.2010
Nitrogen, phosphorous and potassium – there are valuable nutrients contained in wastewater. Unfortunately, these essential nutrients are lost in conventional wastewater treatment plants. This is the reason why researchers at Fraunhofer have been working on processes for regaining these nutrients in the form that can be used for agriculture. They are showcasing their work at Fraunhofer’s stand at the IFAT ENTSORGA fair (September 13-17 in Munich, Germany).

Plants cannot thrive without nutrients such as nitrogen, phosphorous or potassium, therefore farmers usually use organic and industrially manufactured mineral fertilizers to supply wheat, maize and others with these vital substances. In future, the need for nutrients will be soaring because we will only be able to supply the world’s growing population with food and cover surging demands for biofuels by using fertilizers. Logically, that causes the prices for these nutrients to skyrocket.

But that is not the only problem. The deposits of rock phosphates required for manufacturing phosphate fertilizers are becoming increasingly scarce. The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, Germany are working at alternatives. They want to recover these essential nutrients from wastewater.

Dr.- Ing. Maria Soledad Stoll points out that "These nutrients are hardly recovered these days." For instance, conventional municipal waste treatment plants use aluminum or ferrous salts to remove the valuable phosphate. Ms. Stoll goes on to say, "However, aluminum and iron phosphate salts can be toxic for plants even in slight concentrations, which is why they cannot be used as fertilizers." The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology are devising alternative methods for recovering the nutrients from the wastewater to use them for agriculture.

"We are working at new methods to recover magnesium-ammonium-phosphate and organic phosphorous from wastewater. The nutrients will then be directly marketed as a fully adequate product and used in agriculture again depending upon the properties of the soils and cultivated plants," says Ms. Stoll.

The scientists at the Fraunhofer Stand are showing how we can drive down the utilization of resources by nutrient recycling in Hall A4, Stand 201 / 302.

Dr.-Ing. Maria Soledad Stoll | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010/09/Pflanzennaehrstoffe.jsp

Further reports about: Biotechnology Ferchau Engineering Interfacial Wastewater nutrients

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>