Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Microbe Shares Features with Drug-Resistant Pathogen

18.06.2009
Implications for biotech applications; possible targets for infection-fighting drugs

An international team of scientists has discovered extensive similarities between a strain of bacteria commonly associated with plants and one increasingly linked to opportunistic infections in hospital patients.

The findings suggest caution in the use of the plant-associated strain for a range of biotech applications. The genetic analysis was conducted in part at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and will be published in the July 2009 issue of Nature Reviews Microbiology, now available online.

The research team — which included scientists from Ireland, Austria, and the United Kingdom as well as the U.S. — was investigating the versatility and adaptability of a group of bacteria known as Stenotrophomonas. These bacteria have great metabolic versatility, allowing them to thrive in very diverse environments.

The scientists were particularly interested in comparing two strains of S. maltophilia whose genomes were recently decoded to see why these strains — one isolated as an opportunistic pathogen from a clinical setting (strain K279a), and the other from the roots of poplar trees (strain R551-3) — were so well-suited to their very different environments. Such comparisons are made possible by the high throughput and cost-effective DNA sequencing capacity developed by DOE’s Joint Genome Institute, as well as the Sanger Institute, to help elucidate the role of microorganisms in health, energy, and environmental processes.

“Surprisingly, we observed very few differences between the opportunistic pathogen and the common plant bacterium,” said Brookhaven Lab microbiologist Daniel (Niels) van der Lelie, an expert on soil- and plant-associated microbes, whose team provided the data on the plant-dwelling strain.

For one thing, the scientists found genes that make the bacteria resistant to a wide range of antibiotics in both strains. “This suggests that antibiotic resistance is part of the species’ core genome, and not a trait acquired in the hospital,” van der Lelie said. Multi-drug antibiotic-resistance is one key feature that allows some bacteria to cause deadly infections in hospital patients whose immune systems are often compromised.

The scientists are also intrigued about similarities in the mechanisms the two strains use to colonize their respective environments. For example, both strains possess very similar mechanisms to produce glue-like substances, or biofilms, which allow them to adhere to plant roots, in one case, and medical devices such as ventilation tubes and intravenous catheters, in the other. Such devices are a common source of exposure to opportunistic pathogens for hospital patients.

Implications
“Soil microorganisms have long been a source and inspiration for the synthesis of antibiotics,” van der Lelie said. “These finding will help us to better understand the potential of bacteria to produce or become resistant to antimicrobial compounds.”

The findings may also reveal new targets for the development of drugs to interfere with microbes’ ability to form sticky, infection-fostering biofilms, or point the way to closely related non-pathogenic strains that could be useful and benign for biotech applications.

On the other hand, these findings raise the question of whether plants in hospital settings may serve as a reservoir for opportunistic pathogens or antibiotic resistance genes. “This is something that should be looked at more closely by experts in infectious diseases,” van der Lelie said.

The findings also suggest caution in using this particular strain of plant-dwelling bacteria for a range of biotech applications for which it and other plant-associated microbes have shown promise. These include: stimulating plant growth and protecting plants against pathogens; the breakdown of natural and man-made pollutants via bioremediation and phytoremediation; and the production of useful biomolecules such as drugs or industrial enzymes.

Based on the results of this study, van der Lelie’s group has ruled out S. maltophilia for biotech applications designed to increase plant growth. “The work in our lab is presently concentrating on two other plant-growth promoting bacteria, Pseudomonas putida W619 and Enterobacter sp. 638, neither of which contain broad spectrum antibiotic resistance or virulence factors that would allow them to behave as opportunistic pathogens,” he said. “We are certain about this after carefully analyzing the genome sequences of these strains.“

Co-authors on this study include: Robert Ryan and J. Maxwell Dow of University College Cork, Ireland; Sebastien Monchy and Safiyh Taghavi of Brookhaven Lab; Massimiliano Cardinale and Gabriele Berg of Graz University of Technology, Austria; Lisa Crossman of The Wellcome Trust Sanger Institute, UK; and Matthew B. Avison of the University of Bristol, UK.

Brookhaven Lab’s contribution to this study was supported by grants from DOE’s Office of Science, Laboratory Directed Research and Development funds, and by Royalty Funds at Brookhaven Lab under contract with DOE. Sequencing of R551-3 was performed at the DOE Joint Genome Institute. Other aspects of the research were funded by the German Research Foundation, the Austrian Science Foundation, INTAS, the Wellcome Trust, the British Society for Antimicrobial Chemotherapy, and Science Foundation Ireland.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>