Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Microbe Shares Features with Drug-Resistant Pathogen

18.06.2009
Implications for biotech applications; possible targets for infection-fighting drugs

An international team of scientists has discovered extensive similarities between a strain of bacteria commonly associated with plants and one increasingly linked to opportunistic infections in hospital patients.

The findings suggest caution in the use of the plant-associated strain for a range of biotech applications. The genetic analysis was conducted in part at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, and will be published in the July 2009 issue of Nature Reviews Microbiology, now available online.

The research team — which included scientists from Ireland, Austria, and the United Kingdom as well as the U.S. — was investigating the versatility and adaptability of a group of bacteria known as Stenotrophomonas. These bacteria have great metabolic versatility, allowing them to thrive in very diverse environments.

The scientists were particularly interested in comparing two strains of S. maltophilia whose genomes were recently decoded to see why these strains — one isolated as an opportunistic pathogen from a clinical setting (strain K279a), and the other from the roots of poplar trees (strain R551-3) — were so well-suited to their very different environments. Such comparisons are made possible by the high throughput and cost-effective DNA sequencing capacity developed by DOE’s Joint Genome Institute, as well as the Sanger Institute, to help elucidate the role of microorganisms in health, energy, and environmental processes.

“Surprisingly, we observed very few differences between the opportunistic pathogen and the common plant bacterium,” said Brookhaven Lab microbiologist Daniel (Niels) van der Lelie, an expert on soil- and plant-associated microbes, whose team provided the data on the plant-dwelling strain.

For one thing, the scientists found genes that make the bacteria resistant to a wide range of antibiotics in both strains. “This suggests that antibiotic resistance is part of the species’ core genome, and not a trait acquired in the hospital,” van der Lelie said. Multi-drug antibiotic-resistance is one key feature that allows some bacteria to cause deadly infections in hospital patients whose immune systems are often compromised.

The scientists are also intrigued about similarities in the mechanisms the two strains use to colonize their respective environments. For example, both strains possess very similar mechanisms to produce glue-like substances, or biofilms, which allow them to adhere to plant roots, in one case, and medical devices such as ventilation tubes and intravenous catheters, in the other. Such devices are a common source of exposure to opportunistic pathogens for hospital patients.

Implications
“Soil microorganisms have long been a source and inspiration for the synthesis of antibiotics,” van der Lelie said. “These finding will help us to better understand the potential of bacteria to produce or become resistant to antimicrobial compounds.”

The findings may also reveal new targets for the development of drugs to interfere with microbes’ ability to form sticky, infection-fostering biofilms, or point the way to closely related non-pathogenic strains that could be useful and benign for biotech applications.

On the other hand, these findings raise the question of whether plants in hospital settings may serve as a reservoir for opportunistic pathogens or antibiotic resistance genes. “This is something that should be looked at more closely by experts in infectious diseases,” van der Lelie said.

The findings also suggest caution in using this particular strain of plant-dwelling bacteria for a range of biotech applications for which it and other plant-associated microbes have shown promise. These include: stimulating plant growth and protecting plants against pathogens; the breakdown of natural and man-made pollutants via bioremediation and phytoremediation; and the production of useful biomolecules such as drugs or industrial enzymes.

Based on the results of this study, van der Lelie’s group has ruled out S. maltophilia for biotech applications designed to increase plant growth. “The work in our lab is presently concentrating on two other plant-growth promoting bacteria, Pseudomonas putida W619 and Enterobacter sp. 638, neither of which contain broad spectrum antibiotic resistance or virulence factors that would allow them to behave as opportunistic pathogens,” he said. “We are certain about this after carefully analyzing the genome sequences of these strains.“

Co-authors on this study include: Robert Ryan and J. Maxwell Dow of University College Cork, Ireland; Sebastien Monchy and Safiyh Taghavi of Brookhaven Lab; Massimiliano Cardinale and Gabriele Berg of Graz University of Technology, Austria; Lisa Crossman of The Wellcome Trust Sanger Institute, UK; and Matthew B. Avison of the University of Bristol, UK.

Brookhaven Lab’s contribution to this study was supported by grants from DOE’s Office of Science, Laboratory Directed Research and Development funds, and by Royalty Funds at Brookhaven Lab under contract with DOE. Sequencing of R551-3 was performed at the DOE Joint Genome Institute. Other aspects of the research were funded by the German Research Foundation, the Austrian Science Foundation, INTAS, the Wellcome Trust, the British Society for Antimicrobial Chemotherapy, and Science Foundation Ireland.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>