Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant immunity: PUBs are bad for the health

22.12.2008
Genes known as pubs have a negative effect on a plant’s immune system

Disease-causing pathogens carry unique molecular motifs that can be recognized by plants. The motifs, known as pathogen-associated molecular patterns or PAMPs, trigger several reactions in the plant which together generate a defensive immune response.

Ken Shirasu and co-workers at the RIKEN Plant Science Center, Yokohama, and the John Innes Centre, Norwich, UK, have discovered a triplet of genes that appear to hinder the PAMP immune response in Arabidopsis plants (1). The genes, called pub22, pub23 and pub24, code for enzymes called ubiquitin ligases (PUBs), which help to mark other proteins by attaching them to the universal protein ubiquitin.

The researchers decided to study the pub genes because they are similar to a gene known to promote disease resistance in tobacco. To their surprise, they found that when the three genes were deactivated in a mutant strain of Arabidopsis, the plant’s immune response improved. This means that the genes have a negative effect on immunity.

One of the first immune responses triggered by exposure to PAMPs is the oxidative burst, a rapid production of reactive oxygen compounds. In the mutant Arabidopsis plants, the oxidative burst was much stronger, and lasted longer than in wild-type plants. The mutants also showed prolonged activity of signaling molecules and genes known to improve the immune response, and more controlled cell death at infected sites.

These immune system enhancements are not specific to one type of pathogen—they occurred in response to several PAMP stimuli taken from bacterial flagella, the cell walls of fungi, and bacterial DNA transcription proteins. Even more impressively, the absence of pub genes hinders the pathogens themselves. Bacteria and moulds attacking the mutant plants showed up to 30 times less growth than on wild-type plants.

It is likely that the PUB enzymes break down or block the activity of other molecules that promote immunity, by binding the molecules to ubiquitin. A similar phenomenon has been observed in mammals, where ubiquitination has a detrimental effect on protein signaling.

In the future, the researchers hope to identify the exact molecules that are targeted by the PUB triplet. This could help to solve the biggest mystery—why plants have retained genes that make them more vulnerable to disease.

“Plants face pathogens every day and need appropriate levels of immune responses, so they don’t waste energy,” explains Shirasu. “Our knowledge of these regulatory genes could improve disease resistance in agriculture, especially when crops are transferred long distances to areas where they encounter completely new pathogens."

Reference

1. Trujillo, M., Ichimura, K., Casais, C. & Shirasu, K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Current Biology 18, 1396–1401 (2008).

The corresponding author for this highlight is based at the RIKEN Plant Immunity Research Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/605/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>