Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant immunity: PUBs are bad for the health

22.12.2008
Genes known as pubs have a negative effect on a plant’s immune system

Disease-causing pathogens carry unique molecular motifs that can be recognized by plants. The motifs, known as pathogen-associated molecular patterns or PAMPs, trigger several reactions in the plant which together generate a defensive immune response.

Ken Shirasu and co-workers at the RIKEN Plant Science Center, Yokohama, and the John Innes Centre, Norwich, UK, have discovered a triplet of genes that appear to hinder the PAMP immune response in Arabidopsis plants (1). The genes, called pub22, pub23 and pub24, code for enzymes called ubiquitin ligases (PUBs), which help to mark other proteins by attaching them to the universal protein ubiquitin.

The researchers decided to study the pub genes because they are similar to a gene known to promote disease resistance in tobacco. To their surprise, they found that when the three genes were deactivated in a mutant strain of Arabidopsis, the plant’s immune response improved. This means that the genes have a negative effect on immunity.

One of the first immune responses triggered by exposure to PAMPs is the oxidative burst, a rapid production of reactive oxygen compounds. In the mutant Arabidopsis plants, the oxidative burst was much stronger, and lasted longer than in wild-type plants. The mutants also showed prolonged activity of signaling molecules and genes known to improve the immune response, and more controlled cell death at infected sites.

These immune system enhancements are not specific to one type of pathogen—they occurred in response to several PAMP stimuli taken from bacterial flagella, the cell walls of fungi, and bacterial DNA transcription proteins. Even more impressively, the absence of pub genes hinders the pathogens themselves. Bacteria and moulds attacking the mutant plants showed up to 30 times less growth than on wild-type plants.

It is likely that the PUB enzymes break down or block the activity of other molecules that promote immunity, by binding the molecules to ubiquitin. A similar phenomenon has been observed in mammals, where ubiquitination has a detrimental effect on protein signaling.

In the future, the researchers hope to identify the exact molecules that are targeted by the PUB triplet. This could help to solve the biggest mystery—why plants have retained genes that make them more vulnerable to disease.

“Plants face pathogens every day and need appropriate levels of immune responses, so they don’t waste energy,” explains Shirasu. “Our knowledge of these regulatory genes could improve disease resistance in agriculture, especially when crops are transferred long distances to areas where they encounter completely new pathogens."

Reference

1. Trujillo, M., Ichimura, K., Casais, C. & Shirasu, K. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Current Biology 18, 1396–1401 (2008).

The corresponding author for this highlight is based at the RIKEN Plant Immunity Research Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/605/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>