Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Hormone Regulates Nectar Production

29.03.2010
Jasmonic acid triggers nectar accumulation in rapeseed flowers

Rapeseed is one of the ten most important agricultural crops worldwide. In spring, the rapeseed fields with their bright yellow flowers are widely visible: this year winter rapeseed is being cultivated on 1.46 million hectares in Germany; at least 2.2 million tons of rapeseed oil can be expected.

Beekeepers set up their beehives in the vicinity of rapeseed fields, so that the worker bees can gather nectar This ensures that the rapeseed flowers are pollinated and a high crop yield will be obtained. During her studies, a scientist from the Max Planck Institute for Chemical Ecology has discovered that the plant hormone jasmonic acid - known as a signalling molecule after herbivory - not only regulates flower development in the bud stage, but also triggers nectar production. (PLoS ONE 5, e9265, 2010 - open access)

Jasmonic acid and related molecules are constituents of molecular signal transduction chains in plant tissues. These compounds - generally referred to as jasmonates - are synthesized when caterpillars feed on plants; they are signaling substances and belong to the group of plant hormones. By producing jasmonates the plant regulates its defense against herbivores e.g. by stimulating the synthesis of toxins. Moreover, previous studies have shown that jasmonates regulate the production of "extrafloral nectar". This particular nectar, which is produced by special glands called "extrafloral nectaries", has nothing to do with pollination, but attracts ants to the herbivore-attacked plants as defenders against their pests. The sugars in the nectar reward the ants for defending the plant. The same principle applies to floral nectar: nectar production in the flowers attracts and rewards pollinators which in turn contribute substantially to the seed yield. However, up to now, it has not been clear how nectar production is regulated in the flowers.

Different effects in flowers and leaves
Radhika Venkatesan, PhD student at the International Max Planck Research School in Jena, studied Brassica napus, a widespread and agriculturally important plant species. She found that when its flower tissues produced jasmonates during an early developmental stage, nectar production was immediately activated, regardless of whether the plant had been attacked by herbivores or not. "When we put caterpillars on the rapeseed leaves to elicit jasmonic acid production, the nectar secretion of the flowers was not affected," the researcher says. Spraying jasmonic acid on the green leaves also did not have an impact on the production of nectar in the flowers. However, when the scientist sprayed jasmonic acid directly on the flowers, nectar production increased dramatically. This clearly indicates that jasmonic acid has different functions in the different plant tissues: whereas the hormone activates defense mechanisms against herbivores in the leaves and the shoot of the plant, it regulates nectar production in the flower tissue.

The correlation between the production of jasmonic acid and nectar accumulation was demonstrated in experiments with an inhibitor: if the flowers had been treated with an inhibitor of jasmonic acid synthesis, the so-called phenidone, nectar production failed. If the substance was sprayed on young, still closed flower buds, however, their opening was inhibited, which confirms the importance of jasmonic acid also during the development of the flowers.

"The fact that jasmonic acid regulates so many functions, such as plant defense and pollination, is extremely interesting and raises new questions, especially concerning the evolution of these control mechanisms," says Martin Heil, the leader of the study. Wilhelm Boland, director at the Max Planck Institute in Jena, emphasizes: "The more we know about the hormonal effects on flower development and nectar production in agricultural crops like rapeseed, the better we can use this knowledge to ensure high yields." Even beekeepers could benefit from increased nectar production. [JWK, AO]

Original Publication:
Venkatesan Radhika, Christian Kost, Wilhelm Boland, Martin Heil: The role of jasmonates in floral nectar secretion. PLoS ONE 5, e9265, 2010 (open access).
Further information:
Prof. Wilhelm Boland, MPI chemische Ökologie, Tel.: 03641 / 57 - 1200, boland@ice.mpg.de

Prof. Martin Heil, CINVESTAV, Irapuato, Mexiko, Tel.: +52 (462)623 9657, mheil@ira.cinvestav.mx

Picture Material:
Angela Overmeyer M.A., MPI for Chemical Ecology, Tel.: 03641 / 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>