Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Hormone Regulates Nectar Production

29.03.2010
Jasmonic acid triggers nectar accumulation in rapeseed flowers

Rapeseed is one of the ten most important agricultural crops worldwide. In spring, the rapeseed fields with their bright yellow flowers are widely visible: this year winter rapeseed is being cultivated on 1.46 million hectares in Germany; at least 2.2 million tons of rapeseed oil can be expected.

Beekeepers set up their beehives in the vicinity of rapeseed fields, so that the worker bees can gather nectar This ensures that the rapeseed flowers are pollinated and a high crop yield will be obtained. During her studies, a scientist from the Max Planck Institute for Chemical Ecology has discovered that the plant hormone jasmonic acid - known as a signalling molecule after herbivory - not only regulates flower development in the bud stage, but also triggers nectar production. (PLoS ONE 5, e9265, 2010 - open access)

Jasmonic acid and related molecules are constituents of molecular signal transduction chains in plant tissues. These compounds - generally referred to as jasmonates - are synthesized when caterpillars feed on plants; they are signaling substances and belong to the group of plant hormones. By producing jasmonates the plant regulates its defense against herbivores e.g. by stimulating the synthesis of toxins. Moreover, previous studies have shown that jasmonates regulate the production of "extrafloral nectar". This particular nectar, which is produced by special glands called "extrafloral nectaries", has nothing to do with pollination, but attracts ants to the herbivore-attacked plants as defenders against their pests. The sugars in the nectar reward the ants for defending the plant. The same principle applies to floral nectar: nectar production in the flowers attracts and rewards pollinators which in turn contribute substantially to the seed yield. However, up to now, it has not been clear how nectar production is regulated in the flowers.

Different effects in flowers and leaves
Radhika Venkatesan, PhD student at the International Max Planck Research School in Jena, studied Brassica napus, a widespread and agriculturally important plant species. She found that when its flower tissues produced jasmonates during an early developmental stage, nectar production was immediately activated, regardless of whether the plant had been attacked by herbivores or not. "When we put caterpillars on the rapeseed leaves to elicit jasmonic acid production, the nectar secretion of the flowers was not affected," the researcher says. Spraying jasmonic acid on the green leaves also did not have an impact on the production of nectar in the flowers. However, when the scientist sprayed jasmonic acid directly on the flowers, nectar production increased dramatically. This clearly indicates that jasmonic acid has different functions in the different plant tissues: whereas the hormone activates defense mechanisms against herbivores in the leaves and the shoot of the plant, it regulates nectar production in the flower tissue.

The correlation between the production of jasmonic acid and nectar accumulation was demonstrated in experiments with an inhibitor: if the flowers had been treated with an inhibitor of jasmonic acid synthesis, the so-called phenidone, nectar production failed. If the substance was sprayed on young, still closed flower buds, however, their opening was inhibited, which confirms the importance of jasmonic acid also during the development of the flowers.

"The fact that jasmonic acid regulates so many functions, such as plant defense and pollination, is extremely interesting and raises new questions, especially concerning the evolution of these control mechanisms," says Martin Heil, the leader of the study. Wilhelm Boland, director at the Max Planck Institute in Jena, emphasizes: "The more we know about the hormonal effects on flower development and nectar production in agricultural crops like rapeseed, the better we can use this knowledge to ensure high yields." Even beekeepers could benefit from increased nectar production. [JWK, AO]

Original Publication:
Venkatesan Radhika, Christian Kost, Wilhelm Boland, Martin Heil: The role of jasmonates in floral nectar secretion. PLoS ONE 5, e9265, 2010 (open access).
Further information:
Prof. Wilhelm Boland, MPI chemische Ökologie, Tel.: 03641 / 57 - 1200, boland@ice.mpg.de

Prof. Martin Heil, CINVESTAV, Irapuato, Mexiko, Tel.: +52 (462)623 9657, mheil@ira.cinvestav.mx

Picture Material:
Angela Overmeyer M.A., MPI for Chemical Ecology, Tel.: 03641 / 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>