Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New plant hormone functions offer solutions for parasitic weeds

New functions of the plant hormone strigolactone, discovered by researchers at the RIKEN Plant Science Center and University of Toronto, have provided first-ever clues on the germination mechanism for the world’s most destructive species of parasite weeds.

Every year, across Africa, Asia and Australia, parasite weeds of the genus Striga cause billions of dollars in damage to global agriculture. As parasite plants, Striga possess few storage reserves of their own and survive off nutrients produced by their hosts, which include some of the world’s most important crops. Seeds of the parasite plants, dormant in the ground for many years, germinate only when they sense a host nearby, through a mechanism that is poorly understood.

Triggering this mechanism is the plant hormone strigolactone, which in addition to regulating shoot branching patterns, also acts as a chemical cue for Striga germination. To clarify the latter function, the researchers explored the effects of 10,000 small, membrane-permeable molecules on germination and early seedling development in Arabidopsis, a model plant more amenable to experimentation than Striga. Chemical screening revealed five structurally-similar compounds, “cotylimides”, which specifically boost strigolactone production, bleaching Arabidopsis seed leaves.

The researchers tested these five compounds on seeds derived from 520,000 mutant Arabidopsis plants and identified 246 lines which exhibited reduced bleaching, indicating cotylimide resistance. By analyzing a subset of these lines with characteristics similar to Striga, they uncovered that strigolactone production is boosted by light, and that the plant hormone plays a role similar to sunlight in stimulating Arabidopsis germination and greening.

These findings, published in the journal Nature Chemical Biology, expose a previously-unknown relationship between light and strigolactones with deep implications for our understanding of parasitic plants. As a step toward developing parasite-resistant plant species, the hints these findings provide promise to contribute to tackling food security challenges affecting millions worldwide.

For more information, please contact:

Dr. Yuji Kamiya
Growth Regulation Research Team
RIKEN Plant Science Center
Tel: +81-(0)45-503-9649 / Fax: +81-(0)45-503-9665
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Yuichiro Tsuchiya, Danielle Vidaurre, Shigeo Toh, Atsushi Hanada, Eiji Nambara, Yuji Kamiya, Shinjiro Yamaguchi and Peter McCourt. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology 6:741-749. DOI: 10.1038/NCHEMBIO.435

About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>