Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plant hormone functions offer solutions for parasitic weeds

04.10.2010
New functions of the plant hormone strigolactone, discovered by researchers at the RIKEN Plant Science Center and University of Toronto, have provided first-ever clues on the germination mechanism for the world’s most destructive species of parasite weeds.

Every year, across Africa, Asia and Australia, parasite weeds of the genus Striga cause billions of dollars in damage to global agriculture. As parasite plants, Striga possess few storage reserves of their own and survive off nutrients produced by their hosts, which include some of the world’s most important crops. Seeds of the parasite plants, dormant in the ground for many years, germinate only when they sense a host nearby, through a mechanism that is poorly understood.

Triggering this mechanism is the plant hormone strigolactone, which in addition to regulating shoot branching patterns, also acts as a chemical cue for Striga germination. To clarify the latter function, the researchers explored the effects of 10,000 small, membrane-permeable molecules on germination and early seedling development in Arabidopsis, a model plant more amenable to experimentation than Striga. Chemical screening revealed five structurally-similar compounds, “cotylimides”, which specifically boost strigolactone production, bleaching Arabidopsis seed leaves.

The researchers tested these five compounds on seeds derived from 520,000 mutant Arabidopsis plants and identified 246 lines which exhibited reduced bleaching, indicating cotylimide resistance. By analyzing a subset of these lines with characteristics similar to Striga, they uncovered that strigolactone production is boosted by light, and that the plant hormone plays a role similar to sunlight in stimulating Arabidopsis germination and greening.

These findings, published in the journal Nature Chemical Biology, expose a previously-unknown relationship between light and strigolactones with deep implications for our understanding of parasitic plants. As a step toward developing parasite-resistant plant species, the hints these findings provide promise to contribute to tackling food security challenges affecting millions worldwide.

For more information, please contact:

Dr. Yuji Kamiya
Growth Regulation Research Team
RIKEN Plant Science Center
Tel: +81-(0)45-503-9649 / Fax: +81-(0)45-503-9665
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Yuichiro Tsuchiya, Danielle Vidaurre, Shigeo Toh, Atsushi Hanada, Eiji Nambara, Yuji Kamiya, Shinjiro Yamaguchi and Peter McCourt. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology 6:741-749. DOI: 10.1038/NCHEMBIO.435

About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>