Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plant hormone functions offer solutions for parasitic weeds

04.10.2010
New functions of the plant hormone strigolactone, discovered by researchers at the RIKEN Plant Science Center and University of Toronto, have provided first-ever clues on the germination mechanism for the world’s most destructive species of parasite weeds.

Every year, across Africa, Asia and Australia, parasite weeds of the genus Striga cause billions of dollars in damage to global agriculture. As parasite plants, Striga possess few storage reserves of their own and survive off nutrients produced by their hosts, which include some of the world’s most important crops. Seeds of the parasite plants, dormant in the ground for many years, germinate only when they sense a host nearby, through a mechanism that is poorly understood.

Triggering this mechanism is the plant hormone strigolactone, which in addition to regulating shoot branching patterns, also acts as a chemical cue for Striga germination. To clarify the latter function, the researchers explored the effects of 10,000 small, membrane-permeable molecules on germination and early seedling development in Arabidopsis, a model plant more amenable to experimentation than Striga. Chemical screening revealed five structurally-similar compounds, “cotylimides”, which specifically boost strigolactone production, bleaching Arabidopsis seed leaves.

The researchers tested these five compounds on seeds derived from 520,000 mutant Arabidopsis plants and identified 246 lines which exhibited reduced bleaching, indicating cotylimide resistance. By analyzing a subset of these lines with characteristics similar to Striga, they uncovered that strigolactone production is boosted by light, and that the plant hormone plays a role similar to sunlight in stimulating Arabidopsis germination and greening.

These findings, published in the journal Nature Chemical Biology, expose a previously-unknown relationship between light and strigolactones with deep implications for our understanding of parasitic plants. As a step toward developing parasite-resistant plant species, the hints these findings provide promise to contribute to tackling food security challenges affecting millions worldwide.

For more information, please contact:

Dr. Yuji Kamiya
Growth Regulation Research Team
RIKEN Plant Science Center
Tel: +81-(0)45-503-9649 / Fax: +81-(0)45-503-9665
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Yuichiro Tsuchiya, Danielle Vidaurre, Shigeo Toh, Atsushi Hanada, Eiji Nambara, Yuji Kamiya, Shinjiro Yamaguchi and Peter McCourt. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature Chemical Biology 6:741-749. DOI: 10.1038/NCHEMBIO.435

About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>