Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant growth hormones: antagonists cooperate

24.06.2010
Stem cell researchers from Heidelberg and Tübingen elucidate complex interaction between auxin and cytokinin

The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves and buds, are in fact more closely interwoven than previously assumed.

Scientists from Heidelberg, Tübingen (Germany) and Umea (Sweden) made this surprising discovery in a series of complex experiments using thale cress (Arabidopsis thaliana), a biological reference organism. The international team of researchers, led by Prof. Dr. Jan Lohmann, stem cell biologist at Heidelberg University, have now published their results in the scientific journal “Nature”.

All the above-ground parts of a plant – leaves, buds, stems and seeds – ultimately arise from a small tissue at the shoot tip, which contains totipotent stem cells. Since plant stem cells remain active over the entire life of the organism, plants, unlike animals, are able to grow and develop new organs over many decades. On the periphery of the tip, auxin triggers cells to leave the pool of stem cells, differentiate and form organs like leaves and buds. Cytokinin stimulates stem cells to divide and proliferate; it maintains the number of cells and thus the plant’s growth potential.

Some of the genetic factors involved in cytokinin’s effect on plant growth were already known. In the thale cress experiments, which concentrated on the growth zone at the tip of the shoot, Lohmann and his team now studied the role of auxin in the interplay of the two hormones. It turns out that auxin directly interferes with a feedback loop involving two genes activated by cytokinin – ARR7 and ARR15 – which limit the effect of cytokinin. Auxin suppresses these two genes, thereby boosting the effect of cytokinin.

“Auxin acts to support the pool of stem cells”, explains Prof. Lohmann. “When it triggers cells at the periphery of the growth zone to form organs, it still needs to ensure that enough stem cells are supplied.” This keeps the number of stem cells from falling below a critical minimum, which is key for plant growth and survival. “We’re gradually beginning to understand how hormonal and genetic factors are interwoven to maintain the activity of the growth zone. We now know that hormones and genes interact in multiple ways, each one affecting the other. There are no solitary factors.”

In addition to Jan Lohmann, Zhong Zhao and Andrej Miotk from the Department of Stem Cell Biology at the Institute of Zoology at Heidelberg University, the team includes Stig U. Andersen and Sebastian J. Schultheiss from the Max Planck Institute for Developmental Biology and the Friedrich Miescher Laboratory in Tübingen, as well as Karin Ljung and Karel Dolezal of Sweden’s Umea Plant Science Center.

Original publication:
Z. Zhao, S.U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S.J. Schultheiss, J.U. Lohmann: Hormonal control of the shoot stem-cell niche, Nature (24 June 2010), doi: 10.1038/nature09126
Contact:
Prof. Dr. Jan Lohmann
Institute of Zoology
Phone: +49 6221 54-6269
jlohmann@meristemania.org

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>