Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant growth hormones: antagonists cooperate

24.06.2010
Stem cell researchers from Heidelberg and Tübingen elucidate complex interaction between auxin and cytokinin

The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves and buds, are in fact more closely interwoven than previously assumed.

Scientists from Heidelberg, Tübingen (Germany) and Umea (Sweden) made this surprising discovery in a series of complex experiments using thale cress (Arabidopsis thaliana), a biological reference organism. The international team of researchers, led by Prof. Dr. Jan Lohmann, stem cell biologist at Heidelberg University, have now published their results in the scientific journal “Nature”.

All the above-ground parts of a plant – leaves, buds, stems and seeds – ultimately arise from a small tissue at the shoot tip, which contains totipotent stem cells. Since plant stem cells remain active over the entire life of the organism, plants, unlike animals, are able to grow and develop new organs over many decades. On the periphery of the tip, auxin triggers cells to leave the pool of stem cells, differentiate and form organs like leaves and buds. Cytokinin stimulates stem cells to divide and proliferate; it maintains the number of cells and thus the plant’s growth potential.

Some of the genetic factors involved in cytokinin’s effect on plant growth were already known. In the thale cress experiments, which concentrated on the growth zone at the tip of the shoot, Lohmann and his team now studied the role of auxin in the interplay of the two hormones. It turns out that auxin directly interferes with a feedback loop involving two genes activated by cytokinin – ARR7 and ARR15 – which limit the effect of cytokinin. Auxin suppresses these two genes, thereby boosting the effect of cytokinin.

“Auxin acts to support the pool of stem cells”, explains Prof. Lohmann. “When it triggers cells at the periphery of the growth zone to form organs, it still needs to ensure that enough stem cells are supplied.” This keeps the number of stem cells from falling below a critical minimum, which is key for plant growth and survival. “We’re gradually beginning to understand how hormonal and genetic factors are interwoven to maintain the activity of the growth zone. We now know that hormones and genes interact in multiple ways, each one affecting the other. There are no solitary factors.”

In addition to Jan Lohmann, Zhong Zhao and Andrej Miotk from the Department of Stem Cell Biology at the Institute of Zoology at Heidelberg University, the team includes Stig U. Andersen and Sebastian J. Schultheiss from the Max Planck Institute for Developmental Biology and the Friedrich Miescher Laboratory in Tübingen, as well as Karin Ljung and Karel Dolezal of Sweden’s Umea Plant Science Center.

Original publication:
Z. Zhao, S.U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S.J. Schultheiss, J.U. Lohmann: Hormonal control of the shoot stem-cell niche, Nature (24 June 2010), doi: 10.1038/nature09126
Contact:
Prof. Dr. Jan Lohmann
Institute of Zoology
Phone: +49 6221 54-6269
jlohmann@meristemania.org

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>