Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant growth hormones: antagonists cooperate

24.06.2010
Stem cell researchers from Heidelberg and Tübingen elucidate complex interaction between auxin and cytokinin

The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves and buds, are in fact more closely interwoven than previously assumed.

Scientists from Heidelberg, Tübingen (Germany) and Umea (Sweden) made this surprising discovery in a series of complex experiments using thale cress (Arabidopsis thaliana), a biological reference organism. The international team of researchers, led by Prof. Dr. Jan Lohmann, stem cell biologist at Heidelberg University, have now published their results in the scientific journal “Nature”.

All the above-ground parts of a plant – leaves, buds, stems and seeds – ultimately arise from a small tissue at the shoot tip, which contains totipotent stem cells. Since plant stem cells remain active over the entire life of the organism, plants, unlike animals, are able to grow and develop new organs over many decades. On the periphery of the tip, auxin triggers cells to leave the pool of stem cells, differentiate and form organs like leaves and buds. Cytokinin stimulates stem cells to divide and proliferate; it maintains the number of cells and thus the plant’s growth potential.

Some of the genetic factors involved in cytokinin’s effect on plant growth were already known. In the thale cress experiments, which concentrated on the growth zone at the tip of the shoot, Lohmann and his team now studied the role of auxin in the interplay of the two hormones. It turns out that auxin directly interferes with a feedback loop involving two genes activated by cytokinin – ARR7 and ARR15 – which limit the effect of cytokinin. Auxin suppresses these two genes, thereby boosting the effect of cytokinin.

“Auxin acts to support the pool of stem cells”, explains Prof. Lohmann. “When it triggers cells at the periphery of the growth zone to form organs, it still needs to ensure that enough stem cells are supplied.” This keeps the number of stem cells from falling below a critical minimum, which is key for plant growth and survival. “We’re gradually beginning to understand how hormonal and genetic factors are interwoven to maintain the activity of the growth zone. We now know that hormones and genes interact in multiple ways, each one affecting the other. There are no solitary factors.”

In addition to Jan Lohmann, Zhong Zhao and Andrej Miotk from the Department of Stem Cell Biology at the Institute of Zoology at Heidelberg University, the team includes Stig U. Andersen and Sebastian J. Schultheiss from the Max Planck Institute for Developmental Biology and the Friedrich Miescher Laboratory in Tübingen, as well as Karin Ljung and Karel Dolezal of Sweden’s Umea Plant Science Center.

Original publication:
Z. Zhao, S.U. Andersen, K. Ljung, K. Dolezal, A. Miotk, S.J. Schultheiss, J.U. Lohmann: Hormonal control of the shoot stem-cell niche, Nature (24 June 2010), doi: 10.1038/nature09126
Contact:
Prof. Dr. Jan Lohmann
Institute of Zoology
Phone: +49 6221 54-6269
jlohmann@meristemania.org

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>