Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Gene Mapping May Lead to Better Biofuel Production

16.04.2009
By creating a “family tree” of genes expressed in one form of woody plant and a less woody, herbaceous species, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have uncovered clues that may help them engineer plants more amenable to biofuel production.

The study, published in the April 2009 issue of Plant Molecular Biology, also lays a foundation for understanding these genes’ evolutionary and structural properties and for a broader exploration of their roles in plant life.

“We are studying a very large family of genes that instruct cells to make a variety of enzymes important in a wide range of plant functions,” said Brookhaven biologist Chang-Jun Liu. By searching the genomes of woody Poplar trees and leafy Arabidopsis, the scientists identified 94 and 61 genes they suspected belonged to this family in those two species, respectively.

They then looked at how the genes were expressed — activated to make their enzyme products — in different parts of the plants. Of particular interest to Liu’s group were a number of genes expressed at high levels in the woody plant tissues.

“Wood and other biofibers made of plant cell walls are the most abundant feedstocks for biofuel production,” explained Liu. “One of the first steps of biofuel production is to break down these biofibers, or digest them, to make sugar.”

But plants have strategies to inhibit being digested. For example, Liu explained, small molecules called acyl groups attached to cell-wall fibers can act as barriers to hinder conversion of the fibers to sugar. Acyl groups can also form cross-linked networks that make cell walls extra strong.

“Our long-term interest is to find the enzymes that control the formation of cell-wall-bound acyl groups, so we can learn how to modify plant cell walls to increase their digestibility,” Liu said. “The current study, a thorough investigation of an acyl-modifying enzyme family, provides a starting point for us to pursue this goal.”

In fact, some of the genes the scientists found to be expressed at high levels in woody tissues may carry the genetic instructions for making the enzymes the scientists would like to control.

“Our next step will be to use biochemical and biophysical approaches to characterize these individual genes’ functions to find those directly or indirectly related to cell-wall modification. Then we could use those genes to engineer new bioenergy crops, and test whether those changes improve the efficiency of converting biomass to biofuel,” Liu said.

Liu’s group also made some interesting observations about gene expression and gene location in their study of the acyl-modifying enzyme genes. “We discovered a few unique pairs of genes that were inversely overlapped with their neighboring genes on the genome,” Liu said. In this unique organization, the paired genes (sequences of DNA) produce protein-encoding segments (RNAs) that are complementary to one another — meaning the two RNA strands would stick to each other like highly specific Velcro. That would prevent the RNA from building its enzyme, so the expression of one gene in the pair appears to inhibit its partner.

Perhaps understanding this natural “anti-sense” regulation for gene expression will assist scientists in their attempts to regulate acyl-modifying enzyme levels.

This work was supported by the DOE-Department of Agriculture joint Plant Feedstock Genomics program and by Brookhaven’s Laboratory Directed Research and Development program. Funding was also provided by DOE’s Office of Science. In addition to Liu, Xiao-Hong Yu, a former postdoctoral research associate, and Jinying Gou, a current postdoc, contributed to this work.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=928

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>