Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Gene Mapping May Lead to Better Biofuel Production

16.04.2009
By creating a “family tree” of genes expressed in one form of woody plant and a less woody, herbaceous species, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have uncovered clues that may help them engineer plants more amenable to biofuel production.

The study, published in the April 2009 issue of Plant Molecular Biology, also lays a foundation for understanding these genes’ evolutionary and structural properties and for a broader exploration of their roles in plant life.

“We are studying a very large family of genes that instruct cells to make a variety of enzymes important in a wide range of plant functions,” said Brookhaven biologist Chang-Jun Liu. By searching the genomes of woody Poplar trees and leafy Arabidopsis, the scientists identified 94 and 61 genes they suspected belonged to this family in those two species, respectively.

They then looked at how the genes were expressed — activated to make their enzyme products — in different parts of the plants. Of particular interest to Liu’s group were a number of genes expressed at high levels in the woody plant tissues.

“Wood and other biofibers made of plant cell walls are the most abundant feedstocks for biofuel production,” explained Liu. “One of the first steps of biofuel production is to break down these biofibers, or digest them, to make sugar.”

But plants have strategies to inhibit being digested. For example, Liu explained, small molecules called acyl groups attached to cell-wall fibers can act as barriers to hinder conversion of the fibers to sugar. Acyl groups can also form cross-linked networks that make cell walls extra strong.

“Our long-term interest is to find the enzymes that control the formation of cell-wall-bound acyl groups, so we can learn how to modify plant cell walls to increase their digestibility,” Liu said. “The current study, a thorough investigation of an acyl-modifying enzyme family, provides a starting point for us to pursue this goal.”

In fact, some of the genes the scientists found to be expressed at high levels in woody tissues may carry the genetic instructions for making the enzymes the scientists would like to control.

“Our next step will be to use biochemical and biophysical approaches to characterize these individual genes’ functions to find those directly or indirectly related to cell-wall modification. Then we could use those genes to engineer new bioenergy crops, and test whether those changes improve the efficiency of converting biomass to biofuel,” Liu said.

Liu’s group also made some interesting observations about gene expression and gene location in their study of the acyl-modifying enzyme genes. “We discovered a few unique pairs of genes that were inversely overlapped with their neighboring genes on the genome,” Liu said. In this unique organization, the paired genes (sequences of DNA) produce protein-encoding segments (RNAs) that are complementary to one another — meaning the two RNA strands would stick to each other like highly specific Velcro. That would prevent the RNA from building its enzyme, so the expression of one gene in the pair appears to inhibit its partner.

Perhaps understanding this natural “anti-sense” regulation for gene expression will assist scientists in their attempts to regulate acyl-modifying enzyme levels.

This work was supported by the DOE-Department of Agriculture joint Plant Feedstock Genomics program and by Brookhaven’s Laboratory Directed Research and Development program. Funding was also provided by DOE’s Office of Science. In addition to Liu, Xiao-Hong Yu, a former postdoctoral research associate, and Jinying Gou, a current postdoc, contributed to this work.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=928

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>