Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant extract offers hope for infant motor neurone therapy

04.03.2014

A chemical found in plants could reduce the symptoms of a rare muscle disease that leaves children with little or no control of their movements.

Scientists have found that a plant pigment called quercetin – found in some fruits, vegetables, herbs and grains – could help to prevent the damage to nerves associated with the childhood form of motor neuron disease.

Their findings could pave the way for new treatments for spinal muscular atrophy (SMA) – also known as floppy baby syndrome – which is a leading genetic cause of death in children.

The team has found that the build-up of a specific molecule inside cells – called beta-catenin – is responsible for some of the symptoms associated with the condition.

In tests on zebrafish, flies and mice, scientists found that treating the disease with purified quercetin – which targets beta-catenin – led to a significant improvement in the health of nerve and muscle cells.

Quercetin did not prevent all of the symptoms associated with the disorder but researchers hope that it could offer a useful treatment option in the early stages of disease.

They now hope to create better versions of the chemical that are more effective than naturally-occurring quercetin.

SMA is caused by a mutation in a gene that is vital for the survival of nerve cells that connect the brain and spinal cord to the muscles, known as motor neurons. Until now, it was not known how the mutation damages these cells and causes disease.

The study reveals that the mutated gene affects a key housekeeping process that is required for removing unwanted molecules from cells in the body. When this process doesn't work properly, molecules can build-up and cause problems inside the cells.

Children with SMA experience progressive muscle wastage and loss of mobility and control of their movements. The disorder is often referred to as 'floppy baby syndrome' because of the weakness that it creates.

It affects one in 6000 babies and around half of children with the most severe form will die before the age of two.

The study is published today in the Journal of Clinical Investigation.

Professor Tom Gillingwater from the University of Edinburgh, who led the study, said: "This is an important step that could one day improve quality of life for the babies affected by this condition and their families. There is currently no cure for this kind of neuromuscular disorder so new treatments that can tackle the progression of disease are urgently needed."

Jen Middleton | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: SMA Zebrafish beta-catenin disorder muscle cells muscles neurone therapy quercetin spinal symptoms therapy treatments weakness

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>