Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant extract offers hope for infant motor neurone therapy

04.03.2014

A chemical found in plants could reduce the symptoms of a rare muscle disease that leaves children with little or no control of their movements.

Scientists have found that a plant pigment called quercetin – found in some fruits, vegetables, herbs and grains – could help to prevent the damage to nerves associated with the childhood form of motor neuron disease.

Their findings could pave the way for new treatments for spinal muscular atrophy (SMA) – also known as floppy baby syndrome – which is a leading genetic cause of death in children.

The team has found that the build-up of a specific molecule inside cells – called beta-catenin – is responsible for some of the symptoms associated with the condition.

In tests on zebrafish, flies and mice, scientists found that treating the disease with purified quercetin – which targets beta-catenin – led to a significant improvement in the health of nerve and muscle cells.

Quercetin did not prevent all of the symptoms associated with the disorder but researchers hope that it could offer a useful treatment option in the early stages of disease.

They now hope to create better versions of the chemical that are more effective than naturally-occurring quercetin.

SMA is caused by a mutation in a gene that is vital for the survival of nerve cells that connect the brain and spinal cord to the muscles, known as motor neurons. Until now, it was not known how the mutation damages these cells and causes disease.

The study reveals that the mutated gene affects a key housekeeping process that is required for removing unwanted molecules from cells in the body. When this process doesn't work properly, molecules can build-up and cause problems inside the cells.

Children with SMA experience progressive muscle wastage and loss of mobility and control of their movements. The disorder is often referred to as 'floppy baby syndrome' because of the weakness that it creates.

It affects one in 6000 babies and around half of children with the most severe form will die before the age of two.

The study is published today in the Journal of Clinical Investigation.

Professor Tom Gillingwater from the University of Edinburgh, who led the study, said: "This is an important step that could one day improve quality of life for the babies affected by this condition and their families. There is currently no cure for this kind of neuromuscular disorder so new treatments that can tackle the progression of disease are urgently needed."

Jen Middleton | EurekAlert!
Further information:
http://www.ed.ac.uk

Further reports about: SMA Zebrafish beta-catenin disorder muscle cells muscles neurone therapy quercetin spinal symptoms therapy treatments weakness

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>