Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-eating predator to fight superweed is not magic bullet

14.10.2008
Plans to introduce plant-eating predators to fight a superweed spreading throughout Britain should not be seen as a ‘magic bullet’, says a world expert on Japanese knotweed at the University of Leicester.

Dr John Bailey of the Department of Biology has been researching the invasive weed since the 1980s. The research continues with PhD students Michelle Hollingsworth and Catherine Pashley. Research in the Leicester department established that the weed in Britain was a single clone- making it one of the biggest female organism in the world.

Dr Bailey has commented on plans announced this week to introduce a biocontrol to eradicate the weed that is plaguing Britain. The natural predator, a sap-sucking psyllid insect, is proposed to combat the weed. Plans have been submitted to the Government for approval.

University of Leicester scientists have previously liaised with the team behind the latest proposal including Dick Shaw, the lead researcher on the project, from Cabi, a not-for-profit agricultural research organisation.

Dr Bailey said: “Biological control is commonly used in the UK Glasshouse industry with a great deal of success. However, the use of predators invariably means that these die out when the prey levels get very low, and before the target is completely eliminated, so repeated applications are required.

“There is no doubt that in parts of the country Japanese Knotweed is still spreading along riversides and that in such areas it is extremely difficult to use herbicide – even supposing the will and the funding were available! Japanese Knotweed may be a big bully of a plant in Europe, but in Japan it is just one component of a giant herb community, and what we in the West think of as its almost profligate vigour is only enough to keep it in the game, struggling as it does to find somewhere to grow and to avoid the effects of the numerous predators that it attracts.

“A Biological control agent, as the developers themselves admit, is no ‘magic bullet’. Certainly such a release will weaken existing plants and slow down or hamper range extension, it may even have the effect of reducing the amount of hybrid seed produced. But it must be viewed as an invaluable aid to levelling the playfield in the fight against this alien plant, rather than as a ‘mission achieved’.

“If it is to be released it should be as part of a co-ordinated campaign which involves both public education of the dangers of inadvertently spreading the plant, and a redoubling of the use of more conventional control methods. To introduce a control agent and then sit back and let it do its work would lead to little reduction in the occurrence of the plant, and to a great increase in the unsightliness of its formerly pleasantly verdant appearance.”

• Dr Bailey travels widely on the subject of Japanese Knotweed; In September he addressed the Neobiota meeting in Prague with ‘Opening Pandora’s seed packet; unpredictable outcomes in indestructable plants?” Later this month he will be delivering ‘Japanese Knotweed here today – here tomorrow?’ at the BSBI Understanding our Alien Flora meeting in London.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>