Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant-Derived Agents against Cancer and Malaria

16.06.2010
African plants of the Asphodelaceae family contain interesting natural substances: In laboratory tests, some of them were shown to act as agents against malaria pathogens and tumor cells. Professor Gerhard Bringmann of the University of Würzburg studies these natural substances in cooperation with the universities of Johannesburg (South Africa) and Nairobi (Kenya).

The African-German research team has isolated several potential antimalarial and anti-tumor agents from these plants, clarifying their respective chemical structure. These medically interesting substances are called phenyl anthraquinones. They can be found, for instance, in plants of the Kniphofia or Bulbine genus. These plants are native to Africa with a wide distribution in South Africa. There are also some horticultural forms of Kniphofia that are grown as ornamental plants in European gardens.

Gerhard Bringmann: "Phenyl anthraquinones represent a quite remarkable category of natural substances: These molecules consist of two parts, which are connected to each other via an axis." This axis cannot freely rotate so that there are several mirror image forms of the molecules, which can differ in their biological effects.

Active against leukemia and malaria

All phenyl anthraquinones have a certain component in common, which is also present in some other anti-tumor agents. This led to the assumption that phenyl anthraquinones should also have the potential to act as an agent against cancer cells.

"In laboratory tests, some of these substances, e.g knipholone, exhibited an excellent inhibitory activity against certain leukemia cells," says Bringmann. The effect is actually comparable with that of etoposide, which is an established drug in cancer therapy.

In laboratory test sequences, some of these natural substances also stood out in that they were active against the malaria pathogen Plasmodium falciparum. Among other things, this unicellular parasite attacks the red blood cells in the human organism.

Structures clarified, syntheses implemented

The medically interesting effects of the phenyl anthraquinones were discovered at the Collaborative Research Center 630 of the University of Würzburg, the objective of which is the recognition, preparation and functional analysis of agents against infectious diseases; Gerhard Bringmann is its spokesperson.

In the recent years, the natural product chemists of the University of Würzburg have worked very hard to clarify the three-dimensional structure of the phenyl anthraquinones and to produce these substances synthetically. Among the highlights of their work was the discovery of the so-called dimeric anthraquinones: In this case, two of the molecules join together. Furthermore, Bringmann proudly reports on the first-time laboratory synthesis of a whole series of knipholone-type agents.

"Due to our research, the number of the known phenyl anthraquinones has increased from five to more than 20," says the Würzburg professor. However, the substances of many Kniphofia and Bulbine species have not yet been examined or require further research. To change this fact is a central project target of the research triangle "Johannesburg – Nairobi – Würzburg".

Specialist fields of the African partners

The South African research partners, headed by Professor Ben-Erik Van Wyk in Johannesburg, are concerned with the botanical relationships and the taxonomic classification of the plants – they are acknowledged as world-leading experts in this field. The scientific exchange with the South Africans is still in its early stages.

In contrast, mutual visits organized in cooperation with the Kenyan research group of Professor Abiy Yenesew have been established for a long time. This group wants to combine the knowledge of traditional indigenous medicine with the research results in plant chemistry, thus contributing to the pharmaceutical exploitation of African medicinal plants.

So far, nearly 100 plant species have been compiled and botanically characterized by the Kenyan researchers. They have subjected about 25 of these plants to chemical analyses at the laboratories in Nairobi and Würzburg in a joint project funded by the German Research Foundation (DFG). In this process, some new phenyl anthraquinones derived from certain Kniphofia and Bulbine species were discovered and structurally identified.

Macromolecule with fascinating characteristics

"The Asphodelaceae plants still hold many secrets, the discovery of which will keep us busy for a long time," says Gerhard Bringmann. Current examinations give rise to the assumption that the plants can connect as many as four phenyl anthraquinone molecules to form one "macromolecule". This is a particularly fascinating finding. Due to its special three-dimensional structure, the molecule might be able to interact with enzymes or with the genetic code (DNA) – a favorable characteristic for any future medical applications.

A long way to go in the development of new drugs

However, the development of new drugs implies a long, difficult, time-consuming and cost-intensive process. "We can still not predict whether the phenyl anthraquinones will reach the stage of pharmaceutical development and finally make it to the clinical trials," says Bringmann.

Nevertheless, the research triangle "Johannesburg – Nairobi –Würzburg" intends to identify further candidates for future drugs. Such network projects are important: According to Bringmann, the number of new drug approvals has been stagnating for years, although there is a great need for new medicinal agents and therapeutic concepts. After all, millions of people die from malaria or cancer every single year.

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>