Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant clock gene also works in human cells

02.12.2010
A gene that controls part of the 'tick tock' in a plant's circadian clock has been identified by UC Davis researchers. And not only is the plant gene very similar to one in humans, but the human gene can work in plant cells -- and vice versa. The research is published this week in the journal Proceedings of the National Academy of Sciences.

"It's surprising to find a clock gene that is performing the same function across such widely unrelated groups," said Stacey Harmer, associate professor of plant biology in the UC Davis College of Biological Sciences and senior author on the paper.

Major groups of living things -- plants, animals and fungi -- all have circadian clocks that work in similar ways but are built from different pieces, Harmer said. The newly identified gene is an exception to that.

Harmer and UC Davis postdoctoral scholar Matthew Jones, with colleagues at Rice University in Houston and the Salk Institute for Biological Studies in La Jolla, identified the "Jumonji-containing domain 5 gene," or JMJD5, from the lab plant Arabidopsis by screening existing databases for genes that were switched on along with the central plant clock gene, TOC1.

JMJD5 stood out. The protein made by the gene can carry out chemical modification of the histone proteins around which DNA is wrapped, and can likely regulate how genes are turned on and off -- potentially making it part of a clock oscillator.

When Harmer and colleagues made Arabidopsis plants with a deficient gene, they found that the plants' in-built circadian clock ran fast.

A similar gene is found in humans, and human cells with a deficiency in this gene also have a fast-running clock. When the researchers inserted the plant gene into the defective human cells, they could set the clock back to normal -- and the human gene could do the same trick in plant seedlings.

Because the rest of the clock genes are quite different between plants and humans, Harmer thinks that the fact that a very similar gene has the same function in both plants and humans is probably an example of convergent evolution, rather than something handed down from a distant common ancestor.

Convergent evolution is when two organisms arrive at the same solution to a problem but apparently from different starting points.

Maintaining accurate circadian rhythms is hugely important to living things, from maintaining sleep/wake cycles in animals to controlling when plants flower.

The other coauthors on the study are Michael Covington, assistant professor at Rice University; and postdoctoral scholar Luciano DiTacchio, graduate student Christopher Vollmers and Assistant Professor Satchidananda Panda at the Salk Institute. The research was supported by grants from the National Institutes of Health.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>