Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Biology Meets Up with Computational Wizardry

01.06.2011
Over time, plants have evolved to adapt to a constantly changing, often hostile, environment. Unfortunately, they are facing a new and difficult challenge ahead.

Ever since the Industrial Revolution, their environment has become more unpredictable and more extreme, at the same time as the world's population is growing. Food will soon need to be grown where it was not grown before, and existing agricultural lands will need to be cultivated with crops that have superior stress adaptation abilities.

"A crucial first step along the path to increasing world food security is a fundamental understanding of how plants respond to extreme changes in their environment. Much data, and some databases, have already been accumulated, documenting plants' responses to their environments, but those resources remain scattered. There is a gap between biologists, whose expertise lies in the study of organisms' behavior, and computer scientists, with the necessary domain knowledge to unify existing data, and make them accessible for study and further development," said Ruth Grene, professor of plant pathology, physiology, and weed science.

Biologists have long sought "to understand the early responses of higher plants to abiotic stresses such as drought, flooding, heat, cold, ozone, and salt. The key to understanding the responses is signal transduction pathways," said Lenny Heath, a professor of computer science at Virginia Tech.

Signal transduction pathways are collections of interacting cellular components that activate the response of the cell to an external or developmental signal such as a flood.

Heath and his colleagues, Grene, and Andy Pereira of the Virginia Bioinformatics Institute at Virginia Tech, have just received a four-year grant from the National Science Foundation to provide the computational support for the biologists' questions. The grant is valued at $ 1,057,336.

"Climate change events are expected to exacerbate the severity and duration of current adverse environmental conditions. Elucidation of the genetic response networks regulating plant dynamic responses to changing environments is daily becoming more of a reality. Bioinformatics approaches are increasingly available to address these questions," said Pereira, the principal investigator on this project.

Currently, the full details of even one stress-signaling pathway remain unclear. "And, although cross-signaling is clearly an important part of adaptive responses, it is unclear to what extent recognition and response pathways for the various abiotic stresses overlap in any one case," Pereira added.

"Our work should empower plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath explained. Beacon refers to a new systems biology tool that allows the plant biologist to construct and edit signaling pathways. With this information, a curator can integrate current and future data over multiple scales of a cell's organization and across species.

"This project builds upon the community-based, Beacon system to provide computational support for biologists' questions about signaling pathways, thereby empowering those plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath said. A workshop will be held in fall, 2012, when international experts on particular stresses, and particular plant signaling pathways, will come to Virginia Tech to be trained on the Beacon system.

Their work should allow the computational and statistical means to assess if the activity of one molecule causes a response in a second molecule. Innovative components of the Beacon system allow the possibility of simulating particular environmental conditions in order to identify potential new connections in these networks.

Learn more about the researchers:

Andy Pereira http://wwwdev.vbi.vt.edu/faculty/research_groups/andy_pereira

Ruth Grene http://www.ppws.vt.edu/people/faculty/grene/

Lenwood Heath http://www.cs.vt.edu/user/23

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>