Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Biology Meets Up with Computational Wizardry

01.06.2011
Over time, plants have evolved to adapt to a constantly changing, often hostile, environment. Unfortunately, they are facing a new and difficult challenge ahead.

Ever since the Industrial Revolution, their environment has become more unpredictable and more extreme, at the same time as the world's population is growing. Food will soon need to be grown where it was not grown before, and existing agricultural lands will need to be cultivated with crops that have superior stress adaptation abilities.

"A crucial first step along the path to increasing world food security is a fundamental understanding of how plants respond to extreme changes in their environment. Much data, and some databases, have already been accumulated, documenting plants' responses to their environments, but those resources remain scattered. There is a gap between biologists, whose expertise lies in the study of organisms' behavior, and computer scientists, with the necessary domain knowledge to unify existing data, and make them accessible for study and further development," said Ruth Grene, professor of plant pathology, physiology, and weed science.

Biologists have long sought "to understand the early responses of higher plants to abiotic stresses such as drought, flooding, heat, cold, ozone, and salt. The key to understanding the responses is signal transduction pathways," said Lenny Heath, a professor of computer science at Virginia Tech.

Signal transduction pathways are collections of interacting cellular components that activate the response of the cell to an external or developmental signal such as a flood.

Heath and his colleagues, Grene, and Andy Pereira of the Virginia Bioinformatics Institute at Virginia Tech, have just received a four-year grant from the National Science Foundation to provide the computational support for the biologists' questions. The grant is valued at $ 1,057,336.

"Climate change events are expected to exacerbate the severity and duration of current adverse environmental conditions. Elucidation of the genetic response networks regulating plant dynamic responses to changing environments is daily becoming more of a reality. Bioinformatics approaches are increasingly available to address these questions," said Pereira, the principal investigator on this project.

Currently, the full details of even one stress-signaling pathway remain unclear. "And, although cross-signaling is clearly an important part of adaptive responses, it is unclear to what extent recognition and response pathways for the various abiotic stresses overlap in any one case," Pereira added.

"Our work should empower plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath explained. Beacon refers to a new systems biology tool that allows the plant biologist to construct and edit signaling pathways. With this information, a curator can integrate current and future data over multiple scales of a cell's organization and across species.

"This project builds upon the community-based, Beacon system to provide computational support for biologists' questions about signaling pathways, thereby empowering those plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath said. A workshop will be held in fall, 2012, when international experts on particular stresses, and particular plant signaling pathways, will come to Virginia Tech to be trained on the Beacon system.

Their work should allow the computational and statistical means to assess if the activity of one molecule causes a response in a second molecule. Innovative components of the Beacon system allow the possibility of simulating particular environmental conditions in order to identify potential new connections in these networks.

Learn more about the researchers:

Andy Pereira http://wwwdev.vbi.vt.edu/faculty/research_groups/andy_pereira

Ruth Grene http://www.ppws.vt.edu/people/faculty/grene/

Lenwood Heath http://www.cs.vt.edu/user/23

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>