Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Biology Meets Up with Computational Wizardry

01.06.2011
Over time, plants have evolved to adapt to a constantly changing, often hostile, environment. Unfortunately, they are facing a new and difficult challenge ahead.

Ever since the Industrial Revolution, their environment has become more unpredictable and more extreme, at the same time as the world's population is growing. Food will soon need to be grown where it was not grown before, and existing agricultural lands will need to be cultivated with crops that have superior stress adaptation abilities.

"A crucial first step along the path to increasing world food security is a fundamental understanding of how plants respond to extreme changes in their environment. Much data, and some databases, have already been accumulated, documenting plants' responses to their environments, but those resources remain scattered. There is a gap between biologists, whose expertise lies in the study of organisms' behavior, and computer scientists, with the necessary domain knowledge to unify existing data, and make them accessible for study and further development," said Ruth Grene, professor of plant pathology, physiology, and weed science.

Biologists have long sought "to understand the early responses of higher plants to abiotic stresses such as drought, flooding, heat, cold, ozone, and salt. The key to understanding the responses is signal transduction pathways," said Lenny Heath, a professor of computer science at Virginia Tech.

Signal transduction pathways are collections of interacting cellular components that activate the response of the cell to an external or developmental signal such as a flood.

Heath and his colleagues, Grene, and Andy Pereira of the Virginia Bioinformatics Institute at Virginia Tech, have just received a four-year grant from the National Science Foundation to provide the computational support for the biologists' questions. The grant is valued at $ 1,057,336.

"Climate change events are expected to exacerbate the severity and duration of current adverse environmental conditions. Elucidation of the genetic response networks regulating plant dynamic responses to changing environments is daily becoming more of a reality. Bioinformatics approaches are increasingly available to address these questions," said Pereira, the principal investigator on this project.

Currently, the full details of even one stress-signaling pathway remain unclear. "And, although cross-signaling is clearly an important part of adaptive responses, it is unclear to what extent recognition and response pathways for the various abiotic stresses overlap in any one case," Pereira added.

"Our work should empower plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath explained. Beacon refers to a new systems biology tool that allows the plant biologist to construct and edit signaling pathways. With this information, a curator can integrate current and future data over multiple scales of a cell's organization and across species.

"This project builds upon the community-based, Beacon system to provide computational support for biologists' questions about signaling pathways, thereby empowering those plant biologists to curate and archive signaling pathways for abiotic stress responses in the Beacon database," Heath said. A workshop will be held in fall, 2012, when international experts on particular stresses, and particular plant signaling pathways, will come to Virginia Tech to be trained on the Beacon system.

Their work should allow the computational and statistical means to assess if the activity of one molecule causes a response in a second molecule. Innovative components of the Beacon system allow the possibility of simulating particular environmental conditions in order to identify potential new connections in these networks.

Learn more about the researchers:

Andy Pereira http://wwwdev.vbi.vt.edu/faculty/research_groups/andy_pereira

Ruth Grene http://www.ppws.vt.edu/people/faculty/grene/

Lenwood Heath http://www.cs.vt.edu/user/23

Lynn Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>