Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant biology discovery furthers scientists' understanding of plant growth and development

14.03.2014

UC Riverside scientists discover auxin sensing and signaling complex on plant cell surface that explains why leaf epidermal cells have jigsaw puzzle-piece shapes

Auxin, a small molecule, is a plant hormone discovered by Charles Darwin about 100 years ago. Over the years that followed it became understood to be the most important and versatile plant hormone controlling nearly all aspects of plant growth and development, such as bending of shoots toward the source of light (as discovered by Darwin), formation of new leaves, flowers, and roots, growth of roots, and gravity-oriented growth. Just how a small molecule like auxin could play such a pivotal role in plants baffled plant biologists for decades.

Leaf Cells

The lab of Zhenbiao Yang, a professor of cell biology at UC Riverside, has made a discovery that helps explain why leaf epidermal cells have jigsaw puzzle-piece shapes.

Credit: Yang Lab, UC Riverside.

Then, about ten years ago, an auxin sensing and signaling system was discovered in the cell's nucleus, but it could not explain all the diverse roles of auxin.

Now, plant cell biologists at the University of California, Riverside have discovered a new auxin sensing and signaling complex, one that is localized on the cell surface rather than in the cell's nucleus. The discovery provides new insights into the mode of auxin action, the researchers say.

"This is a new milestone in auxin biology and will ignite interest in the field," said Zhenbiao Yang, a professor of cell biology in the Department of Botany and Plant Sciences, and the leader of the research project. "Our findings conclusively demonstrate the existence of an extracellular auxin sensing system in plants, which had long been proposed but remained elusive. Further, we have uncovered the decades-long mystery of how ABP1, an auxin-binding protein, works to control plant developmental processes."

ABP1 was identified more than 40 years ago, but its role was hotly debated among plant biologists because its mode of action remained unclear — until the recent discovery by Yang's team.

The team also showed that the cell surface auxin sensing system involves "transmembrane receptor kinases" (TMKs) — enzymes widespread throughout eukaryotes that typically act as cell surface sensors for extracellular stimuli and translate them into intracellular responses.

"This breakthrough discovery of the cell surface ABP1/TMK auxin sensing system dramatically elevates the level of our understanding of how auxin plays diverse roles," said Natasha Raikhel, a distinguished professor of plant cell biology at UC Riverside, who was not involved in the research. "This signaling mechanism now serves as a paradigm for elucidating the molecular mechanisms underlying various auxin-modulated developmental processes and patterns. In addition to their major impact on the field of plant development and morphogenesis and plant signal transduction, Yang's discoveries also provide novel means of engineering plants with desired morphological traits and growth patterns."

Study results appear in the Feb. 28 issue of Science.

Yang's lab has been studying molecular mechanisms for the formation of the jigsaw puzzle-piece shape of pavement cells in leaf epidermis of the Arabidopsis plant, a small flowering plant widely used in plant biology laboratories as a model organism. It is the interlocking feature of these cells that provides the required physical strength and integrity for flat, thin leaves.

In previous work, the lab found that auxin activated the formation of the puzzle piece shape through ABP1 and ABP1-dependent activation of "ROP GTPases," which are pivotal regulatory proteins that act as a molecular switch in gating incoming signals from the cell surface. It was unclear, however, whether ABP1 was a cell surface auxin receptor. Also, just how it led to the activation of ROP GTPases remained unknown.

"But now we have identified a family of TMKs that physically and functionally interact with ABP1 to perceive and transduce auxin signal at the cell surface," Yang said. "We show that ABP1 and TMKs form a new auxin sensing complex at the cell surface and that TMKs transmit extracellular auxin signals to ROP GTPases located just inside of the cell membrane. This novel auxin sensing and signaling system makes possible the formation of the jigsaw shape of leaf epidermal cells and many other auxin-mediated processes."

Next, Yang's team plans to investigate whether there are additional components in the cell surface auxin sensing complex, what specific pathways are regulated by the cell surface auxin sensor, and why plants need both the nuclear and extracellular auxin sensors.

###

Yang was joined in the study by researchers at UCR; the National University of Singapore; the Chinese Academy of Sciences; the University of Wisconsin; Ghent University, Belgium; the Institute of Science and Technology, Austria; the University of North Carolina, Chapel Hill; and Masaryk University, the Czech Republic.

The research was supported by a grant to Yang from the National Institute of General Medical Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!

Further reports about: Eukaryotes GTPases Kinases ROP Riverside leaf cells mechanisms plant cells processes receptor

More articles from Life Sciences:

nachricht The herbivore dilemma: How corn plants fights off simultaneous attacks
09.02.2016 | Boyce Thompson Institute for Plant Research

nachricht Shedding Light on Bacteria
09.02.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Fossils Turn Out to Be a Rich Source of Information

09.02.2016 | Earth Sciences

Shedding Light on Bacteria

09.02.2016 | Life Sciences

Hunting pressure on forest animals in Africa is on the increase

09.02.2016 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>