Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant biology discovery furthers scientists' understanding of plant growth and development

14.03.2014

UC Riverside scientists discover auxin sensing and signaling complex on plant cell surface that explains why leaf epidermal cells have jigsaw puzzle-piece shapes

Auxin, a small molecule, is a plant hormone discovered by Charles Darwin about 100 years ago. Over the years that followed it became understood to be the most important and versatile plant hormone controlling nearly all aspects of plant growth and development, such as bending of shoots toward the source of light (as discovered by Darwin), formation of new leaves, flowers, and roots, growth of roots, and gravity-oriented growth. Just how a small molecule like auxin could play such a pivotal role in plants baffled plant biologists for decades.

Leaf Cells

The lab of Zhenbiao Yang, a professor of cell biology at UC Riverside, has made a discovery that helps explain why leaf epidermal cells have jigsaw puzzle-piece shapes.

Credit: Yang Lab, UC Riverside.

Then, about ten years ago, an auxin sensing and signaling system was discovered in the cell's nucleus, but it could not explain all the diverse roles of auxin.

Now, plant cell biologists at the University of California, Riverside have discovered a new auxin sensing and signaling complex, one that is localized on the cell surface rather than in the cell's nucleus. The discovery provides new insights into the mode of auxin action, the researchers say.

"This is a new milestone in auxin biology and will ignite interest in the field," said Zhenbiao Yang, a professor of cell biology in the Department of Botany and Plant Sciences, and the leader of the research project. "Our findings conclusively demonstrate the existence of an extracellular auxin sensing system in plants, which had long been proposed but remained elusive. Further, we have uncovered the decades-long mystery of how ABP1, an auxin-binding protein, works to control plant developmental processes."

ABP1 was identified more than 40 years ago, but its role was hotly debated among plant biologists because its mode of action remained unclear — until the recent discovery by Yang's team.

The team also showed that the cell surface auxin sensing system involves "transmembrane receptor kinases" (TMKs) — enzymes widespread throughout eukaryotes that typically act as cell surface sensors for extracellular stimuli and translate them into intracellular responses.

"This breakthrough discovery of the cell surface ABP1/TMK auxin sensing system dramatically elevates the level of our understanding of how auxin plays diverse roles," said Natasha Raikhel, a distinguished professor of plant cell biology at UC Riverside, who was not involved in the research. "This signaling mechanism now serves as a paradigm for elucidating the molecular mechanisms underlying various auxin-modulated developmental processes and patterns. In addition to their major impact on the field of plant development and morphogenesis and plant signal transduction, Yang's discoveries also provide novel means of engineering plants with desired morphological traits and growth patterns."

Study results appear in the Feb. 28 issue of Science.

Yang's lab has been studying molecular mechanisms for the formation of the jigsaw puzzle-piece shape of pavement cells in leaf epidermis of the Arabidopsis plant, a small flowering plant widely used in plant biology laboratories as a model organism. It is the interlocking feature of these cells that provides the required physical strength and integrity for flat, thin leaves.

In previous work, the lab found that auxin activated the formation of the puzzle piece shape through ABP1 and ABP1-dependent activation of "ROP GTPases," which are pivotal regulatory proteins that act as a molecular switch in gating incoming signals from the cell surface. It was unclear, however, whether ABP1 was a cell surface auxin receptor. Also, just how it led to the activation of ROP GTPases remained unknown.

"But now we have identified a family of TMKs that physically and functionally interact with ABP1 to perceive and transduce auxin signal at the cell surface," Yang said. "We show that ABP1 and TMKs form a new auxin sensing complex at the cell surface and that TMKs transmit extracellular auxin signals to ROP GTPases located just inside of the cell membrane. This novel auxin sensing and signaling system makes possible the formation of the jigsaw shape of leaf epidermal cells and many other auxin-mediated processes."

Next, Yang's team plans to investigate whether there are additional components in the cell surface auxin sensing complex, what specific pathways are regulated by the cell surface auxin sensor, and why plants need both the nuclear and extracellular auxin sensors.

###

Yang was joined in the study by researchers at UCR; the National University of Singapore; the Chinese Academy of Sciences; the University of Wisconsin; Ghent University, Belgium; the Institute of Science and Technology, Austria; the University of North Carolina, Chapel Hill; and Masaryk University, the Czech Republic.

The research was supported by a grant to Yang from the National Institute of General Medical Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!

Further reports about: Eukaryotes GTPases Kinases ROP Riverside leaf cells mechanisms plant cells processes receptor

More articles from Life Sciences:

nachricht Common bacteria on verge of becoming antibiotic-resistant superbugs
26.03.2015 | Washington University School of Medicine

nachricht Chemical tag marks future microRNAs for processing, study shows
25.03.2015 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Surface-modified nanoparticles endow coatings with combined properties

26.03.2015 | Trade Fair News

Novel sensor system provides continuous smart monitoring of machinery and plant equipment

26.03.2015 | Trade Fair News

Common bacteria on verge of becoming antibiotic-resistant superbugs

26.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>