Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant biology discovery furthers scientists' understanding of plant growth and development

14.03.2014

UC Riverside scientists discover auxin sensing and signaling complex on plant cell surface that explains why leaf epidermal cells have jigsaw puzzle-piece shapes

Auxin, a small molecule, is a plant hormone discovered by Charles Darwin about 100 years ago. Over the years that followed it became understood to be the most important and versatile plant hormone controlling nearly all aspects of plant growth and development, such as bending of shoots toward the source of light (as discovered by Darwin), formation of new leaves, flowers, and roots, growth of roots, and gravity-oriented growth. Just how a small molecule like auxin could play such a pivotal role in plants baffled plant biologists for decades.

Leaf Cells

The lab of Zhenbiao Yang, a professor of cell biology at UC Riverside, has made a discovery that helps explain why leaf epidermal cells have jigsaw puzzle-piece shapes.

Credit: Yang Lab, UC Riverside.

Then, about ten years ago, an auxin sensing and signaling system was discovered in the cell's nucleus, but it could not explain all the diverse roles of auxin.

Now, plant cell biologists at the University of California, Riverside have discovered a new auxin sensing and signaling complex, one that is localized on the cell surface rather than in the cell's nucleus. The discovery provides new insights into the mode of auxin action, the researchers say.

"This is a new milestone in auxin biology and will ignite interest in the field," said Zhenbiao Yang, a professor of cell biology in the Department of Botany and Plant Sciences, and the leader of the research project. "Our findings conclusively demonstrate the existence of an extracellular auxin sensing system in plants, which had long been proposed but remained elusive. Further, we have uncovered the decades-long mystery of how ABP1, an auxin-binding protein, works to control plant developmental processes."

ABP1 was identified more than 40 years ago, but its role was hotly debated among plant biologists because its mode of action remained unclear — until the recent discovery by Yang's team.

The team also showed that the cell surface auxin sensing system involves "transmembrane receptor kinases" (TMKs) — enzymes widespread throughout eukaryotes that typically act as cell surface sensors for extracellular stimuli and translate them into intracellular responses.

"This breakthrough discovery of the cell surface ABP1/TMK auxin sensing system dramatically elevates the level of our understanding of how auxin plays diverse roles," said Natasha Raikhel, a distinguished professor of plant cell biology at UC Riverside, who was not involved in the research. "This signaling mechanism now serves as a paradigm for elucidating the molecular mechanisms underlying various auxin-modulated developmental processes and patterns. In addition to their major impact on the field of plant development and morphogenesis and plant signal transduction, Yang's discoveries also provide novel means of engineering plants with desired morphological traits and growth patterns."

Study results appear in the Feb. 28 issue of Science.

Yang's lab has been studying molecular mechanisms for the formation of the jigsaw puzzle-piece shape of pavement cells in leaf epidermis of the Arabidopsis plant, a small flowering plant widely used in plant biology laboratories as a model organism. It is the interlocking feature of these cells that provides the required physical strength and integrity for flat, thin leaves.

In previous work, the lab found that auxin activated the formation of the puzzle piece shape through ABP1 and ABP1-dependent activation of "ROP GTPases," which are pivotal regulatory proteins that act as a molecular switch in gating incoming signals from the cell surface. It was unclear, however, whether ABP1 was a cell surface auxin receptor. Also, just how it led to the activation of ROP GTPases remained unknown.

"But now we have identified a family of TMKs that physically and functionally interact with ABP1 to perceive and transduce auxin signal at the cell surface," Yang said. "We show that ABP1 and TMKs form a new auxin sensing complex at the cell surface and that TMKs transmit extracellular auxin signals to ROP GTPases located just inside of the cell membrane. This novel auxin sensing and signaling system makes possible the formation of the jigsaw shape of leaf epidermal cells and many other auxin-mediated processes."

Next, Yang's team plans to investigate whether there are additional components in the cell surface auxin sensing complex, what specific pathways are regulated by the cell surface auxin sensor, and why plants need both the nuclear and extracellular auxin sensors.

###

Yang was joined in the study by researchers at UCR; the National University of Singapore; the Chinese Academy of Sciences; the University of Wisconsin; Ghent University, Belgium; the Institute of Science and Technology, Austria; the University of North Carolina, Chapel Hill; and Masaryk University, the Czech Republic.

The research was supported by a grant to Yang from the National Institute of General Medical Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!

Further reports about: Eukaryotes GTPases Kinases ROP Riverside leaf cells mechanisms plant cells processes receptor

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>