Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planned Coincidence

22.05.2012
Antibody-based search for new chemical reactions

Many discoveries are made by chance, but it is also possible to help it along: The chance of finding something interesting increases when the number of experiments rises. French researchers have now applied this principle to the search for new chemical reactions.

In the journal Angewandte Chemie, they have introduced a new concept based on antibodies and a “sandwich” immunoassay.

Is there any value in randomly mixing substances together like an alchemist to see what happens? When it is carried out systematically and on a large scale, this promising approach, known as high-throughput screening, has become an established technique used in the search for pharmaceutical agents and catalysts.

This concept is now being applied more broadly to the search for novel types of chemical reactions, particularly in the search for new, easier, faster, or more elegant synthetic pathways for natural products, specialty chemicals, and drugs.

French scientists led by Frédéric Taran (Institute of Biology and Technology, Saclay, iBiTec-S, Gif-sur-Yvette) have now developed a new immunoassay-based approach to searching for new coupling reactions that link two organic molecules together.

Reactants A and B are added to the wells of a microtiter plate. In some wells, various transition metals are added as possible reaction promotors. Reactant A carries a marker that is recognized and bound by antibody AK1; reactant B carries a marker for antibody AK2. If a coupling occurs, the product has both markers. After the reaction, the solutions are transferred to new plates that are coated with AK1. After a washing step, only molecules with a binding site for AK1 remain on the plate.

A solution of AK2 is next applied, followed by another washing step. Wherever AK2 binds, a product must be present that carries both markers – the result is a “sandwich” in which the product is the filling between two antibody “slices” of bread. Successful reactions are made visible by an enzyme that is bound to AK2 and causes the color to change to yellow. Wherever the color is clearly yellow, the reaction product is analyzed to determine if the reaction that formed it is of a known type or is previously unknown.

In order to prove that this concept works, the researchers examined 2260 reactions in parallel. The reactants they selected have both conventional and unconventional reactive groups. They were thus able to identify two new types of reaction promoted by copper: the reaction of thioureas to form isoureas and a cyclization reaction to form thiazole derivatives from alkynes and N-hydroxy thioureas.

About the Author
Dr Frédéric Taran is head of a chemistry laboratory at the Life Science Division of the CEA located in Saclay, near Paris. He has been working in the fields of labelling, catalysis and reaction discovery, notably by the use of high-throughput screening techniques, for over 10 years.
Author: Frédéric Taran, CEA, iBiTecS, Gif-sur-Yvette (France), http://www-dsv.cea.fr/en/institutes/institute-of-biology-and-technology-saclay-ibitec-s/units/molecular-labelling-and-bio-organic-chemistry-scbm/14c-labeling-laboratory-lmc/14c-labelling-f.-taran
Title: Reaction Discovery by Using a Sandwich Immunoassay
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201201451

Frédéric Taran | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>