Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planarian genes that control stem cell biology identified

02.03.2012
FINDINGS: Devising a novel method to identify potential genetic regulators in planarian stem cells, Whitehead Institute scientists have determined which of those genes affect the two main functions of stem cells.

Three of the genes are particularly intriguing because they code for proteins similar to those known to regulate mammalian embryonic stem cells. Such genetic similarity makes planarians an even more attractive model for studying stem cell biology in vivo.

RELEVANCE: Stem cells may hold the promise to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics and nerve cells for patients with spinal cord injuries. With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for studying stem cell behavior. Yet, until now, scientists have been unable to efficiently identify the genes that regulate the planarian stem cell system.

CAMBRIDGE, Mass. – Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cells—insights that may eventually help such cells deliver on a promising role in regenerative medicine.

In this week's issue of the journal Cell Stem Cell, Reddien and scientists in his lab report on their development of a novel approach to identify and study the genes that control stem cell behavior in planarians. Intriguingly, at least one class of these genes has a counterpart in human embryonic stem cells.

"This is a huge step forward in establishing planarians as an in vivo system for which the roles of stem cell regulators can be dissected," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "In the grand scheme of things for understanding stem cell biology, I think this is a beginning foray into seeking general principles that all animals utilize. I'd say we're at the beginning of that process."

Planarians (Schmidtea mediterranea) are tiny freshwater flatworms with the ability to reproduce through fission. After literally tearing themselves in half, the worms use stem cells, called cNeoblasts, to regrow any missing tissues and organs, ultimately forming two complete planarians in about a week.

Unlike muscle, nerve, or skin cells that are fully differentiated, certain stem cells, such as cNeoblasts and embryonic stem cells are pluripotent, having the ability to become almost cell type in the body. Researchers have long been interested in harnessing this capability to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics or nerve cells for patients with spinal cord injuries.

Several problems currently confound the therapeutic use of stem cells, including getting the stem cells to differentiate into the desired cell type in the appropriate location and having such cells successfully integrate with surrounding tissues, all without forming tumors. To solve these issues, researchers need a better understanding of how stem cells tick at the molecular level, particularly within the environment of a living organism. To date, a considerable amount of embryonic stem cell research has been conducted in the highly artificial environment of the Petri dish.

With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for this line of research. Yet, until now, scientists have been unable to efficiently find the genes that regulate the planarian stem cell system.

Postdoctoral researcher Dan Wagner, first author of the Cell Stem Cell paper, and Reddien devised a clever method to identify potential genetic regulators and then determine if those genes affect the two main functions of stem cells: differentiation and renewal of the stem cell population.

After identifying genes active in cNeoblasts, Wagner irradiated the planarians, leaving a single surviving cNeoblast in each planarian. Left alone, each cNeoblast can form colonies of new cells at very specific rates of differentiation and stem cell renewal.

The researchers knocked down each of the active genes, one per planarian, and observed how the surviving cNeoblasts responded. By comparing the rate of differentiation and stem cell renewal to that of normal cNeoblasts, they could determine the role of each gene. Thus, if a colony containing a certain knocked down gene were observed to have fewer stem cells than the controls, it could be concluded that gene in question plays a role in the process of stem cell renewal. And if the colony had fewer differentiated cells than normal, the knocked down gene could be associated with differentiation.

"Because it's a quantitative method, we can now precisely measure the role of each gene in different aspects of stem cell function," says Wagner. "Being able to measure stem cell activity with a colony is a great improvement over methods that existed before, which were much more indirect."

In total, Wagner identified 10 genes impacting cNeoblast renewal, and two genes with roles in both renewal and differentiation. According to Wagner, three of the stem cell renewal genes are particularly intriguing because they code for proteins that are similar to components of Polycomb Repressive Complex 2 (PRC2), known to regulate stem cell biology in mammalian embryonic stem cells and in other stem cell systems.

"It's interesting because it suggests a parallel between how stem cells operate in planarians and in mammals. For example, there might be similarities between how cNeoblasts and embryonic stem cells function and maintain stemness at the molecular level," he says.

This work was supported by the National Institutes of Health (NIH) and the Keck Foundation.

Written by Nicole Giese Rura

Peter Reddien's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Early Career Scientist and an associate professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Genetic Regulators of a Pluripotent Adult Stem Cell System in Planarians Identified by RNAi and Clonal Analysis" Cell Stem Cell, March 2, 2012.Daniel E. Wagner (1), Jaclyn J. Ho (1), and Peter W. Reddien (1).

1. Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>