Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Placing Active Agents in the Body with "Mini-Containers"

16.11.2009
New Research Collaboration at Jena University funded with Euro 1.25 million

Jena scientists from different disciplines founded a new network in order to utilize so-called nanocontainers for applications in the biomedical field ("NanoConSens"). The research collaboration is now being funded by the State of Thuringia for the next 3 years with EUR 1.25 million within the framework of the "ProExzellenz Initiative".

"We aim at building up and optimizing various nanocontainers in such way that they - as intelligent transport vehicles - release active agents in the right dose at the right time at the right place in the human body", Prof. Dr. Ulrich S. Schubert from the University in Jena describes the direction of the project. "With that, high-impact medicine which is not blood soluble", explains the initiative's coordinator, "can be selectively transported to its destination without side effects. We are striving to enclose, for instance, antibiotics or even complex molecules like siRNA."

Such different substances require transport vehicles that are individually tailored to the special type of molecule. Moreover, they have to be provided with molecules navigating on their surface, like for example sugars or peptides. The new collaboration is, among other things, using combinations of novel concepts for building up star-shaped polymers, employing cationic polymers, varying the size of the nanocontainers and utilizing state-of-the-art methods of synthesis (like the so-called "click chemistry"). Furthermore, modified nanocontainers can be employed as sensors for the investigation of living cells - for example to determine ionic concentration, temperature or pH value.

The eight funded interdisciplinary subprojects unite partners from such disciplines as chemistry, pharmacy, medicine and biology from the Friedrich Schiller University Jena and the Leibniz Institute for Natural Product Research and Infection Biology - "Hans-Knöll-Institute" (HKI). The entire project helps strengthen the research profile of the Friedrich Schiller University Jena and its research focus on "Innovative Materials and Technologies" (www.materials.uni-jena.de).

Contact:
Prof. Dr. Ulrich S. Schubert
Institute of Organic Chemistry and Macromolecular Chemistry at Jena University
Humboldtstr. 10
D-07743 Jena
Tel.: +49-3641-948201
Email: info[at]schubert-group.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>