Placenta-derived stem cells may help sufferers of lung diseases

An Italian research team, publishing in the current issue of Cell Transplantation (18:4), which is now available on-line without charge at http://www.ingentaconnect.com/content/cog/ct, has found that stem cells derived from human placenta may ultimately play a role in the treatment of lung diseases, such as pulmonary fibrosis and fibrotic diseases caused by tuberculosis, chemical exposure, radiation or pathogens. These diseases can ultimately lead to loss of normal lung tissue and organ failure. No known therapy effectively reverses or stops the fibrotic process.

Placenta-derived stem cells are known to be able to engraft in solid organs, including the lungs. Human term placenta stem cells also demonstrate characteristics of high plasticity and low immunogenicity.

“The potential application of fetal membrane-derived cells as a therapeutic tool for disorders characterized by inflammation and fibrosis is supported in previous studies,” says Dr. Ornella Parolini, the study's lead author. “In line with the hypothesis that cells derived from the amniotic membrane have immunomodulatory properties and have been used as an anti-inflammatory agent, we set out to evaluate the effects of fetal membrane-derived cell transplantation in chemically-treated (bleomycin) mice.”

According to Dr. Parolini, cells delivered via intra-peritoneal transplant, regardless of the cells being allogenic or xenogenic (host's own cells or from another individual respectively), the procedure resulted in a significant anti-fibrotic effect on the lab animals. A “consistent” reduction in lung fibrosis, says Dr. Parolini, “provides convincing proof” that placenta-derived cells do confer benefits for bleomycin-induced lung injury. While the severity of inflammation did not show an overall reduction, there was a marked reduction in neutrophil (white blood cell) infiltration after both xeno-and-allo-transplantation.

“It is worth noting,” says Dr. Parolini,” that the presence of neutrophils is associated with poor prognosis for several lung diseases. However, the mechanism by which placenta-derived cells might affect infiltration by neutrophils is not known.”

The researchers speculated that these cells may produce soluble factors that induce anti-inflammatory effects.

“Our findings suggest that fetal membrane-derived cells may prove useful for cell therapy of fibrotic diseases in the future,” concludes Dr. Parolini.

Dr. Cesar Borlongan, of the University of South Florida and associate editor for Cell Transplantation, notes that the present study adds an important application of placenta cells, indicating their therapeutic effects in lung diseases. The cells' ability to reduce neutrophils possibly via secreted anti-inflammatory factors implies their use either as autografts or allografts, thereby increasing the numbers of the target patient population.

Contact: Ornella Parolini, PhD, Centro di Ricerca E. Menni, Fondazione Poliambulanza-Instituto Ospelaliero, Via Bissolati 57, 1-25124 Brescia, Italy. Tel: 390302455754 email: ornella.parolini@tin.it or parolini-ornella@poliambulanza.it

The editorial offices for CELL TRANSPLANTATION are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications.

Media Contact

Ornella Parolini EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors