Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt team identifies key protein causing excess liver production of glucose in diabetes

29.09.2011
Researchers at the John G. Rangos Sr. Research Center at Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine have identified a powerful molecular pathway that regulates the liver's management of insulin and new glucose production, which could lead to new therapies for diabetes. The findings were published online this week in Diabetes, a journal of the American Diabetes Association.

Usually, the liver stores excess blood sugar as glycogen, which it doles out overnight during sleep and other periods of fasting to keep glucose levels within a normal physiological range, explained H. Henry Dong, Ph.D., associate professor of pediatrics, Pitt School of Medicine. But in diabetes, the liver continues to pump out glucose even when insulin is provided as a treatment.

"Scientists have been trying to find the factors that contribute to this liver overproduction of glucose for decades," Dr. Dong said. "If we can control that pathway, we should be able to help reduce the abnormally high blood sugar levels seen in patients with diabetes."

He and his team have been studying a family of proteins called Forkhead box or FOX, and for the current project focused on one called FOX06. They found that mice engineered to make too much FOX06 developed signs of metabolic syndrome, the precursor to diabetes, including high blood sugar and high insulin levels during fasting as well as impaired glucose tolerance, while mice that made too little FOX06 had abnormally low blood sugars during fasting.

"In a normal animal, a glucose injection causes blood sugar level to rise initially and then it goes back to normal range within two hours," Dr. Dong said. "In animals that made too much FOX06, blood sugar after a glucose injection doesn't normalize within two hours. They have lost the ability to regulate the level while the liver keeps making unneeded glucose."

Other experiments showed that diabetic mice have abnormally high levels of FOX06 in the liver, he added. Blocking the protein markedly reduced liver production of glucose, although blood sugar did not completely normalize. Within two weeks of treatment, there was significant improvement in blood sugar and glucose metabolism in diabetic mice.

Tests with human liver cells echoed the importance of FOX06's role in glucose production.

"These findings strongly suggest that FOX06 has potential to be developed as a therapeutic target," Dr. Dong said. "If we can inhibit its activity, we can possibly slow the liver's production of glucose in patients with diabetes and better control blood sugar levels."

Co-authors include lead author Dae Hyun Kim, Ph.D., and other researchers from the University of Pittsburgh's departments of Pediatrics and of Pathology. The study was funded by the National Institutes of Health.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

About Children's Hospital of Pittsburgh of UPMC

Renowned for its outstanding clinical services, research programs and medical education, Children's Hospital of Pittsburgh of UPMC has helped establish the standards of excellence in pediatric care. From Ambulatory Care to Transplantation and Cardiac Care, talented and committed pediatric experts care for infants, children and adolescents who make more than 1,000,000 visits to Children's, its many neighborhood locations, and Children's Community Pediatrics practices each year.

Children's also consistently has been named to several elite lists of pediatric health care facilities, including U.S. News & World Report's Honor Roll of America's "Best Children's Hsopitals" and the Leapfrog Group. Also, Pediatric research programs at Children's Hospital and the University of Pittsburgh School of Medicine ranked eighth in number of grants from the NIH for fiscal year 2010.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>