Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt team grows arteries with most elastic protein reported, big step for living vascular grafts

01.02.2011
Arteries cultivated from baboon smooth muscle cells contain 20 percent of the protein elastin found in natural arteries, the most reported in vessels grown outside the body, team reports in the Proceedings of the National Academy of Sciences

University of Pittsburgh researchers have grown arteries that exhibit the elasticity of natural blood vessels at the highest levels reported, a development that could overcome a major barrier to creating living-tissue replacements for damaged arteries, the team reports in the Proceedings of the National Academy of Sciences.

The team used smooth muscle cells from adult baboons to produce the first arteries grown outside the body that contain a substantial amount of the pliant protein elastin, which allows vessels to expand and retract in response to blood flow. Lead researcher Yadong Wang, a professor of bioengineering in Pitt's Swanson School of Engineering, his postdoctoral researcher Kee-Won Lee, and Donna Stolz, a professor of cell biology and physiology in Pitt's School of Medicine, cultured the baboon cells in a nutrient-rich solution to bear arteries with approximately 20 percent as much elastin as an inborn artery.

The Pitt process is notable for its simplicity, Wang said. Elastin—unlike its tougher counterpart collagen that gives vessels their strength and shape—has been notoriously difficult to reproduce. The only successful methods have involved altering cell genes with a virus; rolling cell sheets into tubes; or culturing elastin with large amounts of transforming growth factor, Wang said. And still these previous projects did not report a comparison of elastin content with natural vessels.

Wang and his colleagues had strong, functional arteries in three weeks. The team first seeded smooth-muscle cells from 4-year-old baboons—equivalent to 20-year-old humans—into degradable rubber tubes chambered like honey combs. They then transferred the tubes to a bioreactor that pumped the nutrient solution through the tube under conditions mimicking the human circulatory system—the pump produced a regular pulse, and the fluid was kept at 98.6 degrees Fahrenheit. As the muscle cells grew, they produced proteins that fused to form the vessel.

Mechanical tests revealed that the cultured artery could withstand a burst pressure between 200 and 300 millimeters of mercury (mmHg), the standard unit for blood pressure, Wang said; healthy human blood pressure is below 120 mmHg. In addition to containing elastin, the artery also had approximately 10 percent of the collagen found in a natural vessel, Wang said.

The process the Pitt team used to cultivate the artery resembles how it would be used in a patient, he explained. The cell-seeded tube would be grafted onto an existing artery. As the rubber tube degrades, the vascular graft would develop into a completely biological vessel.

The next steps in the project, Wang said, are to design a vessel that fully mimics the three-layer structure of a human artery and to prepare for surgical trials.

The project received support from the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

Further reports about: Pitt vaccine blood flow blood pressure blood vessel muscle cells rubber tube

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>