Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt team finds molecule that regulates heart size by using zebrafish screening model

07.07.2009
Using zebrafish, researchers at the University of Pittsburgh have identified and described an enzyme inhibitor that allows them to increase the number of cardiac progenitor cells and therefore influence the size of the developing heart. The findings are described in the advance online version of Nature Chemical Biology.

The zebrafish model has powerful advantages for studying embryonic development, said senior author Michael Tsang, Ph.D., assistant professor, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.

"This gives us a better understanding of heart development during the embryonic stage and has implications for adult disease," he noted. "As we try to create treatments that restore normal function to damaged or diseased tissues, it will help us to know the biologic pathways and signals that formed these organs whole and healthy in the first place. This information can be gained by studying developmental biology."

Zebrafish are vertebrate animals whose transparent embryos develop rapidly, are small and easy to handle and, most importantly, grow outside of the mother. In earlier work, Dr. Tsang and his team bred a line of transgenic zebrafish with the gene for green fluorescent protein linked to a key signaling pathway of fibroblast growth factors (FGFs), a family of proteins that are essential in embryonic development.

"The transgenic zebrafish embryos allow us to actually see when a drug or compound influences FGFs because the cells glow green," Dr. Tsang said. "The embryos are like biosensors for FGF signaling, showing us what's happening in real time in living animals."

For the current paper, he and colleagues focused on a small molecule called BCI, which hyperactivated FGF signaling. They then figured out how: BCI blocked the activity of an enzyme called Dusp6, a feedback regulator that would otherwise have tamped down the enhanced FGF signal.

Knowing that, BCI could then be used as a tool to find out what effect Dusp6 inhibition would have on heart development. Zebrafish treated with BCI had a greater number of cardiac progenitor cells and, ultimately, larger hearts, Dr. Tsang said.

Unraveling the fibroblast growth factor pathway has broad implications for improving wound healing as well, Dr. Tsang said. For example, FGF2 has been used in treatment of chronic skin ulcers and following burn surgery in Japan. Thus, BCI alone or in combination with FGF2 might accelerate the healing process and improve wound repair.

Co-authors of the paper include the lead investigator Gabriela Molina, B.S., Wade Znosko, B.S., and Thomas Smithgall, Ph.D., Department of Microbiology and Molecular Genetics; Andreas Vogt, Ph.D., Pierre Queiroz de Oliveira, B.S., and John Lazo, Ph.D., Department of Pharmacology and Chemical Biology; Ahmet Bakan, B.S., Ivet Bahar, Ph.D., Weixiang Dai, Ph.D., and Billy Day, Ph.D., Department of Pharmaceutical Sciences. All authors are from the University of Pittsburgh.

The project was funded by grants from the National Institutes of Health and the Fiske Drug Discovery Fund.

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu
http://www.medschool.pitt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>