Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Team Designs Artificial Cells That Communicate and Cooperate Like Biological Cells, Follow Each Other Like Ants

20.07.2010
Researchers develop first models for producing polymer-based artificial cells capable of self-organizing, performing tasks, and transporting “cargo,” from chemicals to medicine, according to report in Proceedings of the National Academy of Sciences
Microcapsules in “snake” formation as competing signaling capsules (shown in red) pull respective lines of target cells in opposite directions.

PITTSBURGH—Inspired by the social interactions of ants and slime molds, University of Pittsburgh engineers have designed artificial cells capable of self-organizing into independent groups that can communicate and cooperate.

Recently reported in the Proceedings of the National Academy of Sciences (PNAS), the research is a significant step toward producing synthetic cells that behave like natural organisms and could perform important, microscale functions in fields ranging from the chemical industry to medicine.

The team presents in the PNAS paper computational models that provide a blueprint for developing artificial cells—or microcapsules—that can communicate, move independently, and transport “cargo” such as chemicals needed for reactions. Most importantly, the “biologically inspired” devices function entirely through simple physical and chemical processes, behaving like complex natural organisms but without the complicated internal biochemistry, said corresponding author Anna Balazs, Distinguished Professor of Chemical Engineering in Pitt’s Swanson School of Engineering.

The Pitt group’s microcapsules interact by secreting nanoparticles in a way similar to that used by biological cells signal to communicate and assemble into groups. And with a nod to ants, the cells leave chemical trails as they travel, prompting fellow microcapsules to follow. Balazs worked with lead author German Kolmakov and Victor Yashin, both postdoctoral researchers in Pitt’s Department of Chemical and Petroleum Engineering, who produced the cell models; and with Pitt professor of electrical and computer engineering Steven Levitan, who devised the ant-like trailing ability.

The researchers write that communication hinges on the interaction between microcapsules exchanging two different types of nanoparticles. The “signaling” cell secretes nanoparticles known as agonists that prompt the second “target” microcapsule to emit nanoparticles known as antagonists.

Video of this interaction is available on Pitt’s Web site, one of several videos of the artificial cells Pitt has provided. As the signaling cell (right) emits the agonist nanoparticles (shown as blue), the target cell (left) responds with antagonists (shown as red) that stop the first cell from secreting. Once the signaling cell goes dormant, the target cell likewise stops releasing antagonists—which makes the signaling cell start up again. The microcapsules get locked into a cycle that equates to an intercellular conversation, a dialogue humans could control by adjusting the capsules’ permeability and the quantity of nanoparticles they contain.

Locomotion results as the released nanoparticles alter the surface underneath the microcapsules. The cell’s polymer-based walls begin to push on the fluid surrounding the capsule and the fluid pushes back even harder, moving the capsule. At the same time, the nanoparticles from the signaling cell pull it toward the target cells. Groups of capsules begin to form as the signaling cell rolls along, picking up target cells. In practical use, Balazs said, the signaling cell could transport target cells loaded with cargo; the team’s next step is to control the order in which target cells are collected and dropped off.

The researchers adjusted the particle output of the signaling cell to create various cell formations, some of which are shown in the videos available on Pitt’s Web site. The first clip shows the trailing “ants,” wherein the particle secretions of one microcapsule group are delayed until another group passes by and activates it. The newly awakened cluster then follows the chemical residue left behind by the lead group.

A second film depicts a “dragon” formation comprising two cooperating signaling cells (shown as red) leading a large group of targets. Similar to these are “snakes” made up of competing signaling capsules pulling respective lines of target cells.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>