Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt Team Designs Artificial Cells That Communicate and Cooperate Like Biological Cells, Follow Each Other Like Ants

20.07.2010
Researchers develop first models for producing polymer-based artificial cells capable of self-organizing, performing tasks, and transporting “cargo,” from chemicals to medicine, according to report in Proceedings of the National Academy of Sciences
Microcapsules in “snake” formation as competing signaling capsules (shown in red) pull respective lines of target cells in opposite directions.

PITTSBURGH—Inspired by the social interactions of ants and slime molds, University of Pittsburgh engineers have designed artificial cells capable of self-organizing into independent groups that can communicate and cooperate.

Recently reported in the Proceedings of the National Academy of Sciences (PNAS), the research is a significant step toward producing synthetic cells that behave like natural organisms and could perform important, microscale functions in fields ranging from the chemical industry to medicine.

The team presents in the PNAS paper computational models that provide a blueprint for developing artificial cells—or microcapsules—that can communicate, move independently, and transport “cargo” such as chemicals needed for reactions. Most importantly, the “biologically inspired” devices function entirely through simple physical and chemical processes, behaving like complex natural organisms but without the complicated internal biochemistry, said corresponding author Anna Balazs, Distinguished Professor of Chemical Engineering in Pitt’s Swanson School of Engineering.

The Pitt group’s microcapsules interact by secreting nanoparticles in a way similar to that used by biological cells signal to communicate and assemble into groups. And with a nod to ants, the cells leave chemical trails as they travel, prompting fellow microcapsules to follow. Balazs worked with lead author German Kolmakov and Victor Yashin, both postdoctoral researchers in Pitt’s Department of Chemical and Petroleum Engineering, who produced the cell models; and with Pitt professor of electrical and computer engineering Steven Levitan, who devised the ant-like trailing ability.

The researchers write that communication hinges on the interaction between microcapsules exchanging two different types of nanoparticles. The “signaling” cell secretes nanoparticles known as agonists that prompt the second “target” microcapsule to emit nanoparticles known as antagonists.

Video of this interaction is available on Pitt’s Web site, one of several videos of the artificial cells Pitt has provided. As the signaling cell (right) emits the agonist nanoparticles (shown as blue), the target cell (left) responds with antagonists (shown as red) that stop the first cell from secreting. Once the signaling cell goes dormant, the target cell likewise stops releasing antagonists—which makes the signaling cell start up again. The microcapsules get locked into a cycle that equates to an intercellular conversation, a dialogue humans could control by adjusting the capsules’ permeability and the quantity of nanoparticles they contain.

Locomotion results as the released nanoparticles alter the surface underneath the microcapsules. The cell’s polymer-based walls begin to push on the fluid surrounding the capsule and the fluid pushes back even harder, moving the capsule. At the same time, the nanoparticles from the signaling cell pull it toward the target cells. Groups of capsules begin to form as the signaling cell rolls along, picking up target cells. In practical use, Balazs said, the signaling cell could transport target cells loaded with cargo; the team’s next step is to control the order in which target cells are collected and dropped off.

The researchers adjusted the particle output of the signaling cell to create various cell formations, some of which are shown in the videos available on Pitt’s Web site. The first clip shows the trailing “ants,” wherein the particle secretions of one microcapsule group are delayed until another group passes by and activates it. The newly awakened cluster then follows the chemical residue left behind by the lead group.

A second film depicts a “dragon” formation comprising two cooperating signaling cells (shown as red) leading a large group of targets. Similar to these are “snakes” made up of competing signaling capsules pulling respective lines of target cells.

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>