Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt researchers build a better mouse model to study depression

Researchers at the University of Pittsburgh School of Medicine have developed a mouse model of major depressive disorder (MDD) that is based on a rare genetic mutation that appears to cause MDD in the majority of people who inherit it.

The findings, which were published online today in the American Journal of Medical Genetics Part B: Neuropsychiatric Genetics EarlyView, could help to clarify the brain events that lead to MDD, and contribute to the development of new and better means of treatment and prevention. This report also illustrates an advance in the design of recombinant mouse models that should be applicable to many human diseases.

"Major depressive disorder is a leading cause of suffering, disability and premature death from all causes including suicide. While the cause currently is unknown, twin and adoption studies indicate that genetic factors account for 40 to 70 percent of the risk for developing this common disorder," explained lead author George Zubenko, M.D., Ph.D., professor of psychiatry, Pitt School of Medicine.

"In this report, we describe how we constructed a laboratory mouse strain that mimics the brain mechanism that leads to major depression in humans, rather than symptoms," he said. "Nonetheless, in our initial characterization, the mutant mice exhibited several features that were reminiscent of the human disorder, including alterations of brain anatomy, gene expression, behavior, as well as increased infant mortality."

"These findings support the role of the genetic variant in the development of MDD, and affirm the mutant mouse strain as a model of MDD worthy of further study," Dr. Zubenko said. Hugh B. Hughes, III, M.S., served as the co-author of this report.

Previous studies of families with a severe and strongly familial form of MDD revealed a mutation in the control region of CREB1, a gene that orchestrates the expression of many other genes that play important roles in normal brain functioning. Mice have a CREB1 gene that is very similar to the human version and, with the aid of genetic engineering techniques, the researchers were able to establish a mutant mouse strain that bore the same genetic error. Since the control regions of corresponding human and mouse genes often have regions of high similarity, the methods described in this report may be useful in creating mouse models of other human diseases.

"Treatments that are the most effective and produce the fewest side effects typically address the root causes of the disease," Dr. Zubenko noted. "Animal models that recapitulate those root causes should better inform us about the brain mechanisms that lead to MDD, and have the best chance of leading to advances in treatment and prevention."

This work was supported by grants from the National Institute of Mental Health; and the Provost's Fund for Research Development and the Shane Richard Brown Fund, both of the University of Pittsburgh. MRI data were collected at the Pittsburgh NMR Center for Biomedical Research at Carnegie Mellon University and were analyzed with support from the Office of the Senior Vice Chancellor for the Health Sciences, University of Pittsburgh, and the National Center for Research Resources, a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research.

For videos or photographs of the MDD mouse, contact Anita Srikameswaran at 412-578-9193 or

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see

Contact: Anita Srikameswaran
Phone: 412-578-9193
Contact: Megan Grote Quatrini
Phone: 412-586-9769

Anita Srikameswaran | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>