Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt researchers build a better mouse model to study depression

19.05.2011
Researchers at the University of Pittsburgh School of Medicine have developed a mouse model of major depressive disorder (MDD) that is based on a rare genetic mutation that appears to cause MDD in the majority of people who inherit it.

The findings, which were published online today in the American Journal of Medical Genetics Part B: Neuropsychiatric Genetics EarlyView, could help to clarify the brain events that lead to MDD, and contribute to the development of new and better means of treatment and prevention. This report also illustrates an advance in the design of recombinant mouse models that should be applicable to many human diseases.

"Major depressive disorder is a leading cause of suffering, disability and premature death from all causes including suicide. While the cause currently is unknown, twin and adoption studies indicate that genetic factors account for 40 to 70 percent of the risk for developing this common disorder," explained lead author George Zubenko, M.D., Ph.D., professor of psychiatry, Pitt School of Medicine.

"In this report, we describe how we constructed a laboratory mouse strain that mimics the brain mechanism that leads to major depression in humans, rather than symptoms," he said. "Nonetheless, in our initial characterization, the mutant mice exhibited several features that were reminiscent of the human disorder, including alterations of brain anatomy, gene expression, behavior, as well as increased infant mortality."

"These findings support the role of the genetic variant in the development of MDD, and affirm the mutant mouse strain as a model of MDD worthy of further study," Dr. Zubenko said. Hugh B. Hughes, III, M.S., served as the co-author of this report.

Previous studies of families with a severe and strongly familial form of MDD revealed a mutation in the control region of CREB1, a gene that orchestrates the expression of many other genes that play important roles in normal brain functioning. Mice have a CREB1 gene that is very similar to the human version and, with the aid of genetic engineering techniques, the researchers were able to establish a mutant mouse strain that bore the same genetic error. Since the control regions of corresponding human and mouse genes often have regions of high similarity, the methods described in this report may be useful in creating mouse models of other human diseases.

"Treatments that are the most effective and produce the fewest side effects typically address the root causes of the disease," Dr. Zubenko noted. "Animal models that recapitulate those root causes should better inform us about the brain mechanisms that lead to MDD, and have the best chance of leading to advances in treatment and prevention."

This work was supported by grants from the National Institute of Mental Health; and the Provost's Fund for Research Development and the Shane Richard Brown Fund, both of the University of Pittsburgh. MRI data were collected at the Pittsburgh NMR Center for Biomedical Research at Carnegie Mellon University and were analyzed with support from the Office of the Senior Vice Chancellor for the Health Sciences, University of Pittsburgh, and the National Center for Research Resources, a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research.

For videos or photographs of the MDD mouse, contact Anita Srikameswaran at 412-578-9193 or SrikamAV@upmc.edu.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Contact: Anita Srikameswaran
Phone: 412-578-9193
E-mail: SrikamAV@upmc.edu
Contact: Megan Grote Quatrini
Phone: 412-586-9769
E-mail: GroteME@upmc.edu

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>