Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt pharmacologists go on a molecular fishing trip and hook prize catch

03.05.2010
Scientists at the University of Pittsburgh School of Medicine went on a molecular fishing trip and netted a catch of new mediators that not only can explain how omega-3 fatty acids reduce inflammation, but also hint at novel treatments for a host of diseases linked to inflammatory processes. Their findings were published today in the online version of Nature Chemical Biology.

There is strong evidence that eating foods rich in omega-3 fatty acids, such as some fish, plant-derived oils and nuts, or taking omega-3s as a dietary supplement reduces inflammation and lowers the risk of illness and death from cardiovascular and other inflammatory diseases, said Bruce A. Freeman, Ph.D., professor and chair of the Department of Pharmacology and Chemical Biology, Pitt School of Medicine, and one of the study's senior authors.

"What has been a provocative question for people familiar with these impressive clinical actions is how omega-3 fatty acids actually induce such beneficial pharmacological effects," he said. "This study has given us fresh and revealing perspective into that process."

In this study, also led by Pitt assistant professor Francisco J. Schopfer, Ph.D., the researchers examined metabolic byproducts of omega-3 fatty acids that are produced by activated macrophages, a type of immune cell that is always present in inflamed tissue, and discovered previously unknown biochemical mediators of inflammation.

Using a small molecule called beta-mercaptoethanol (BME) as a reactive bait, Chiara Cipollina, Ph.D., one of the study's lead authors and a post-doctoral student from Palermo, Italy's Ri.MED Foundation, "hooked" several derivatives of omega-3 fatty acids that were produced by immune cells. These derivatives were chemically modified to become electrophilic fatty acid oxidation products (EFOX), meaning they are attracted to electrons and therefore react with critical molecular targets in many different cell types.

By interacting with certain protein residues that have electrons available for chemical binding, these derivatives stimulate changes in cellular protein function and the genetic expression patterns of cells, resulting in a broad range of antioxidant and anti-inflammatory responses.

The research team found that an enzyme called cyclooxygenase-2 (COX-2), which is the molecular target of common drugs such as aspirin, ibuprofen and acetaminophen, mediates the transformation of omega-3 fatty acids into EFOX. Notably, cellular EFOX concentrations were significantly increased in the presence of aspirin, suggesting another mechanism for that drug's beneficial effects.

"There is a lot of evidence that supports minimizing inflammation as a fundamental therapy for many diseases," Dr. Freeman said. "Our new insights help explain in part the multitude of beneficial actions observed for both omega-3 fatty acids and aspirin, and the discovery of this new class of omega-3 fatty acid-derived anti-inflammatory mediators could point drug development activities in new and fruitful directions."

For example, drugs that, like aspirin, enhance the production of EFOX could be of value, or new agents might be synthesized that are able to induce anti-inflammatory signals that are similar to those induced by EFOX, he explained. Drs. Freeman and Schopfer and their drug discovery team now are working on some of these approaches.

The research team also included co-lead author Alison L. Groeger, Ph.D., Marsha P. Cole, Ph.D., Steven R. Woodcock, Ph.D., and Gustavo Bonacci, Ph.D., all of the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. Co-authors Tanja K. Rudolph, M.D., and Volker Rudolph, M.D., have since returned to their positions at the University Heart Center, Hamburg, Germany.

The study was funded by start-up support from the University of Pittsburgh School of Medicine and grants from the National Institutes of Health, the American Diabetes Association, and the Ri.MED Foundation.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997 and now ranks fifth in the nation, according to preliminary data for fiscal year 2008. Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>