Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt chemical biologist finds new halogenation enzyme


Discovery is expected to impact pharmaceutical and agricultural industries

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents in many bioactive compounds has a profound influence on their molecular properties.

One of the Holy Grails in chemical science has been to find the late-stage, site-specific incorporation of a halogen atom into a complex natural product by replacing an sp³ C-H bond (one of the most inert chemical bonds known in an organic compound) with a C-X bond (X=halogen). Until work was undertaken in the laboratory of Xinyu Liu at the University of Pittsburgh, there was no reliable synthetic or biological method known to be able to achieve this type of transformation.

In an article published online on Sept. 14 in Nature Chemical Biology, the group, led by Liu, an assistant professor of chemistry within Pitt's Kenneth P. Dietrich School of Arts and Sciences, has discovered the first enzyme that can accomplish this feat.

Liu and postdoctoral fellow Matthew Hillwig studied bacteria and demonstrated that the WelO5 protein is the first enzyme identified to have the capacity to mediate the regio- and stereospecific replacement of an aliphatic C-H bond to C-Cl bond on a freestanding small molecule. Specifically, they determined this by studying the biogenesis of hapalindole-type alkaloid welwitindolinones in stigonematalean cyanobacteria.

Their work also provides conclusive evidence on a longstanding question regarding the enzymatic origin of chlorine substitution in the biogenesis of hapalindole-type alkaloids in accordance with a proposal that was recently formulated by the Liu group.

It is expected that this discovery will present unprecedented opportunities to evolve new catalysts for selective late-stage halogenations on unactivated carbons in complex molecular scaffolds.

This development could find broad applications in pharmaceutical and agricultural industries, enabling medicinal chemists to tailor synthetic molecules with halogen substituents in order to improve their pharmacological profiles.

Joe Miksch | Eurek Alert!
Further information:

Further reports about: biogenesis biologist capacity compounds discovered enzyme synthetic

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>