Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt chemical biologist finds new halogenation enzyme

16.09.2014

Discovery is expected to impact pharmaceutical and agricultural industries

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents in many bioactive compounds has a profound influence on their molecular properties.

One of the Holy Grails in chemical science has been to find the late-stage, site-specific incorporation of a halogen atom into a complex natural product by replacing an sp³ C-H bond (one of the most inert chemical bonds known in an organic compound) with a C-X bond (X=halogen). Until work was undertaken in the laboratory of Xinyu Liu at the University of Pittsburgh, there was no reliable synthetic or biological method known to be able to achieve this type of transformation.

In an article published online on Sept. 14 in Nature Chemical Biology, the group, led by Liu, an assistant professor of chemistry within Pitt's Kenneth P. Dietrich School of Arts and Sciences, has discovered the first enzyme that can accomplish this feat.

Liu and postdoctoral fellow Matthew Hillwig studied bacteria and demonstrated that the WelO5 protein is the first enzyme identified to have the capacity to mediate the regio- and stereospecific replacement of an aliphatic C-H bond to C-Cl bond on a freestanding small molecule. Specifically, they determined this by studying the biogenesis of hapalindole-type alkaloid welwitindolinones in stigonematalean cyanobacteria.

Their work also provides conclusive evidence on a longstanding question regarding the enzymatic origin of chlorine substitution in the biogenesis of hapalindole-type alkaloids in accordance with a proposal that was recently formulated by the Liu group.

It is expected that this discovery will present unprecedented opportunities to evolve new catalysts for selective late-stage halogenations on unactivated carbons in complex molecular scaffolds.

This development could find broad applications in pharmaceutical and agricultural industries, enabling medicinal chemists to tailor synthetic molecules with halogen substituents in order to improve their pharmacological profiles.

Joe Miksch | Eurek Alert!
Further information:
http://www.pitt.edu/

Further reports about: biogenesis biologist capacity compounds discovered enzyme synthetic

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>