Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt biologists find 'surprising' number of unknown viruses in sewage

06.10.2011
Researchers developed new computational tools to characterize viruses; published this week in mBio

Though viruses are the most abundant life form on Earth, our knowledge of the viral universe is limited to a tiny fraction of the viruses that likely exist. In a paper published this week in the online journal mBio, researchers from the University of Pittsburgh, Washington University in St. Louis, and the University of Barcelona found that raw sewage is home to thousands of novel, undiscovered viruses, some of which could relate to human health.

There are roughly 1.8 million species of organisms on our planet, and each one is host to untold numbers of unique viruses, but only about 3,000 have been identified to date. To explore this diversity and to better characterize the unknown viruses, Professor James Pipas, Distinguished Professor of Biological Sciences Roger Hendrix, and Assistant Professor Michael Grabe, all of the Department of Biological Sciences in Pitt's Kenneth P. Dietrich School of Arts and Sciences, are developing new techniques to look for novel viruses in unique places around the world.

With coauthors David Wang and Guoyan Zhao of Washington University in St. Louis and Rosina Girones of the University of Barcelona, the team searched for the genetic signatures of viruses present in raw sewage from North America, Europe, and Africa.

In the paper, titled "Raw Sewage Harbors Diverse Viral Populations," the researchers report detecting signatures from 234 known viruses that represent 26 different families of viruses. This makes raw sewage home to the most diverse array of viruses yet found.

"What was surprising was that the vast majority of viruses we found were viruses that had not been detected or described before," says Hendrix.

The viruses that were already known included human pathogens like Human papillomavirus and norovirus, which causes diarrhea. Also present were several viruses belonging to those familiar denizens of sewers everywhere: rodents and cockroaches. Bacteria are also present in sewage, so it was not surprising that the viruses that prey on bacteria dominated the known genetic signatures. Finally, a large number of the known viruses found in raw sewage came from plants, probably owing to the fact that humans eat plants, and plant viruses outnumber other types of viruses in human stool.

This study was also the first attempt to look at all the viruses in the population. Other studies have focused on bacteria, or certain types of viruses. The researchers also developed new computational tools to analyze this data. This approach, called metagenomics, had been done before, but not with raw sewage.

The main application of this new technology, says Hendrix, will be to discover new viruses and to study gene exchange among viruses. "The big question we're interested in is, 'Where do emerging viruses come from?'" he says. The team's hypothesis is that new viruses emerge, in large part, through gene exchange. But before research on gene exchange can begin in earnest, large numbers of viruses must be studied, the researchers say.

"First you have to see the forest before you can pick out a particular tree to work on," says Pipas. "If gene exchange is occurring among viruses, then we want to know where those genes are coming from, and if we only know about a small percentage of the viruses that exist, then we're missing most of the forest."

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>