Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pitt biologists find 'surprising' number of unknown viruses in sewage

Researchers developed new computational tools to characterize viruses; published this week in mBio

Though viruses are the most abundant life form on Earth, our knowledge of the viral universe is limited to a tiny fraction of the viruses that likely exist. In a paper published this week in the online journal mBio, researchers from the University of Pittsburgh, Washington University in St. Louis, and the University of Barcelona found that raw sewage is home to thousands of novel, undiscovered viruses, some of which could relate to human health.

There are roughly 1.8 million species of organisms on our planet, and each one is host to untold numbers of unique viruses, but only about 3,000 have been identified to date. To explore this diversity and to better characterize the unknown viruses, Professor James Pipas, Distinguished Professor of Biological Sciences Roger Hendrix, and Assistant Professor Michael Grabe, all of the Department of Biological Sciences in Pitt's Kenneth P. Dietrich School of Arts and Sciences, are developing new techniques to look for novel viruses in unique places around the world.

With coauthors David Wang and Guoyan Zhao of Washington University in St. Louis and Rosina Girones of the University of Barcelona, the team searched for the genetic signatures of viruses present in raw sewage from North America, Europe, and Africa.

In the paper, titled "Raw Sewage Harbors Diverse Viral Populations," the researchers report detecting signatures from 234 known viruses that represent 26 different families of viruses. This makes raw sewage home to the most diverse array of viruses yet found.

"What was surprising was that the vast majority of viruses we found were viruses that had not been detected or described before," says Hendrix.

The viruses that were already known included human pathogens like Human papillomavirus and norovirus, which causes diarrhea. Also present were several viruses belonging to those familiar denizens of sewers everywhere: rodents and cockroaches. Bacteria are also present in sewage, so it was not surprising that the viruses that prey on bacteria dominated the known genetic signatures. Finally, a large number of the known viruses found in raw sewage came from plants, probably owing to the fact that humans eat plants, and plant viruses outnumber other types of viruses in human stool.

This study was also the first attempt to look at all the viruses in the population. Other studies have focused on bacteria, or certain types of viruses. The researchers also developed new computational tools to analyze this data. This approach, called metagenomics, had been done before, but not with raw sewage.

The main application of this new technology, says Hendrix, will be to discover new viruses and to study gene exchange among viruses. "The big question we're interested in is, 'Where do emerging viruses come from?'" he says. The team's hypothesis is that new viruses emerge, in large part, through gene exchange. But before research on gene exchange can begin in earnest, large numbers of viruses must be studied, the researchers say.

"First you have to see the forest before you can pick out a particular tree to work on," says Pipas. "If gene exchange is occurring among viruses, then we want to know where those genes are coming from, and if we only know about a small percentage of the viruses that exist, then we're missing most of the forest."

Karen Hoffmann | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>